[1] | A. M. Ghaleb and A. Q. Ahmed, “Structural, electronic, and optical properties of sphalerite ZnS compounds calculated using density functional theory (DFT),” Chalcogenide Lett., vol. 19, no. 5, pp. 309–318, May 2022, doi: 10.15251/CL.2022.195.309. |
[2] | N. Mohammed, S. J. Shakkor, S. M. Abdalhadi, and Y. K. Al-Bayati, “Two multifunctional benzoquinone derivatives as small molecule organic semiconductors for bulk heterojunction and perovskite solar cells,” Main Gr. Chem., vol. 21, no. 4, pp. 943–952, Dec. 2022, doi: 10.3233/MGC-210187. |
[3] | L. Kang, F. Liang, X. Jiang, Z. Lin, and C. Chen, “First-Principles Design and Simulations Promote the Development of Nonlinear Optical Crystals,” Acc. Chem. Res., vol. 53, no. 1, pp. 209–217, 2020, doi: 10.1021/acs.accounts.9b00448. |
[4] | H. Wu et al., “Designing Silicates as Deep‐UV Nonlinear Optical (NLO) Materials using Edge‐Sharing Tetrahedra,” Angew. Chemie, vol. 132, no. 23, pp. 9007–9011, 2020, doi: 10.1002/ange.202001855. |
[5] | S. Chinnasami, M. Manikandan, S. Chandran, R. Paulraj, and P. Ramasamy, “Growth, Hirshfeld surfaces, spectral, quantum chemical calculations, photoconductivity and chemical etching analyses of nonlinear optical p-toluidine p-toluenesulfonate single crystal,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 206, pp. 340–349, 2019, doi: 10.1016/j.saa.2018.08.015. |
[6] | P. K. M. Lokhande, D. S. Patil, M. M. Kadam, and N. Sekar, “Theoretical Investigation of Optical and Nonlinear Optical (NLO) Properties of 3-Azabenzanthrone Analogues: DFT and TD-DFT Approach.,” ChemistrySelect, vol. 4, no. 34, pp. 10033–10045, 2019, doi: 10.1002/slct.201901681. |
[7] | S. Sarwar et al., “Deciphering the Role of Alkali Metals (Li, Na, K) Doping for Triggering Nonlinear Optical (NLO) Properties of T-Graphene Quantum Dots: Toward the Development of Giant NLO Response Materials,” ACS Omega, vol. 7, no. 28, pp. 24396–24414, 2022, doi: 10.1021/acsomega.2c01746. |
[8] | J. Mary Linet and S. Jerome Das, “Optical, mechanical and transport properties of unidirectional grown l-tartaric acid bulk single crystal for non-linear optical application,” Mater. Chem. Phys., vol. 126, no. 3, pp. 886–890, 2011, doi: 10.1016/j.matchemphys.2010.12.020. |
[9] | J. S. Salem, J. H. Abdulwahid, S. Beebany, and B. L. Mohammed, “Synthesis, Identification, and Antibacterial Effect Assessment of Some New 1, 4-Thiazepines, Derived from Substituted Diphenyl Acrylamides and Diphenyl Dienones,” Chem. Methodol., vol. 7, no. August, pp. 509–523, 2023, doi: 10.22034/CHEMM.2023.392659.1668. |
[10] | P. Of, “DERIVATIVES USING GREEN Syzygium Cumini SEED,” vol. 15, no. 3, pp. 1861–1866, 2022. |
[11] | M. Ganga and K. R. Sankaran, “Synthesis, spectral characterization, DFT, docking studies and cytotoxic evaluation of 1-(4-fluorobenzyl)-2,4,5-triphenyl-1H-imidazole derivatives,” Chem. Data Collect., vol. 28, p. 100412, 2020, doi: 10.1016/j.cdc.2020.100412. |
[12] | S. Hosseini, A. R. Kiasat, and A. Farhadi, “Fe3O4@SiO2/Bipyridinium Nanocomposite as a Magnetic and Recyclable Heterogeneous Catalyst for the Synthesis of Highly Substituted Imidazoles Via Multi-Component Condensation Strategy,” Polycycl. Aromat. Compd., vol. 41, no. 4, pp. 761–771, 2021, doi: 10.1080/10406638.2019.1616306. |
[13] | O. Ghashghaei, F. Seghetti, and R. Lavilla, “Selectivity in multiple multicomponent reactions: Types and synthetic applications,” Beilstein J. Org. Chem., vol. 15, pp. 521–534, 2019, doi: 10.3762/bjoc.15.46. |
[14] | N. A. Shekhovtsov, E. B. Nikolaenkova, A. A. Ryadun, D. G. Samsonenko, A. Y. Tikhonov, and M. B. Bushuev, “ESIPT-Capable 4-(2-Hydroxyphenyl)-2-(Pyridin-2-yl)-1H-Imidazoles with Single and Double Proton Transfer: Synthesis, Selective Reduction of the Imidazolic OH Group and Luminescence,” Molecules, vol. 28, no. 4, 2023, doi: 10.3390/molecules28041793. |
[15] | C. E. Bell, A. Y. Shaw, F. De Moliner, and C. Hulme, “MCRs reshaped into a switchable microwave-assisted protocol toward 5-aminoimidazoles and dihydrotriazines,” Tetrahedron, vol. 70, no. 1, pp. 54–59, 2014, doi: 10.1016/j.tet.2013.11.035. |
[16] | A. Jayashree, B. Narayana, S. M. Kumar, K. R. Raghi, B. K. Sarojini, and T. K. M. Kumar, “Synthesis, X-ray crystal structure, Hirshfeld surface analysis, DFT, MESP and molecular docking studies of 2-(4-bromophenyl)-1-(3-fluoro-4-methylphenyl)-4,5-diphenyl-1H-imidazole,” Chem. Data Collect., vol. 21, no. May, p. 100237, 2019, doi: 10.1016/j.cdc.2019.100237. |
[17] | Y. Erdogdu, D. Manimaran, M. T. Güllüoǧlu, M. Amalanathan, I. Hubert Joe, and Ş. Yurdakul, “FT-IR, FT-Raman, NMR spectra and DFT simulations of 4-(4-fluoro-phenyl)-1H- imidazole,” Opt. Spectrosc. (English Transl. Opt. i Spektrosk., vol. 114, no. 4, pp. 525–536, 2013, doi: 10.1134/S0030400X13040073. |
[18] | N. Fridman, M. Kaftory, Y. Eichen, and S. Speiser, “Crystal structures and solution spectroscopy of lophine derivatives,” J. Mol. Struct., vol. 917, no. 2–3, pp. 101–109, 2009, doi: 10.1016/j.molstruc.2008.07.003. |
[19] | P. Shojaei, B. Mokhtari, and M. Ghorbanpoor, “Synthesis, in vitro antifungal evaluation and docking studies of novel derivatives of imidazoles and benzimidazoles,” Med. Chem. Res., vol. 28, no. 9, pp. 1359–1367, 2019, doi: 10.1007/s00044-019-02369-7. |
[20] | G. Șerban Andrei, B. F. Andrei, and P. R. Roxana, “Imidazole Derivatives and their Antibacterial Activity - A Mini-Review,” Mini-Reviews Med. Chem., vol. 21, no. 11, pp. 1380–1392, 2020, doi: 10.2174/1389557520999201209213648. |
[21] | K. S. Khandare, R. T. Maharaj, L. A. Chate, S. N. Wanjari, M. P. Ambatkar, and P. B. Khedekar, “Design, Synthesis and Biological Evaluation of Some Novel Imidazole Derivatives for Antibacterial Activity,” Anti-inflamm. Antibact. Act. Artic. WORLD J. Pharm. Pharm. Sci., no. September, 2020, doi: 10.20959/wjpps20209-17041. |
[22] | P. A. Nikitina, N. I. Bormotov, L. N. Shishkina, A. Y. Tikhonov, and V. P. Perevalov, “Synthesis and antiviral activity of 1-hydroxy-2-(2-hydroxyphenyl)imidazoles against vaccinia virus,” Russ. Chem. Bull., vol. 68, no. 3, pp. 634–637, 2019, doi: 10.1007/s11172-019-2467-6. |
[23] | S. Anthal, B. Narayana, B. K. Sarojini, and R. Kant, “Synthesis, X-ray crystal structure studies and molecular docking analysis of 2-(3,4-dimethoxyphenyl)-4,5-diphenyl-1H-imidazole,” Chem. Data Collect., vol. 15–16, pp. 67–74, 2018, doi: 10.1016/j.cdc.2018.04.004. |
[24] | Z. W. Li et al., “Synthesis and evaluation of the antitumor activity of novel 1-(4-Substituted phenyl)-2-ethyl imidazole apoptosis inducers in vitro,” Molecules, vol. 25, no. 18, pp. 1–13, 2020, doi: 10.3390/molecules25184293. |
[25] | S. Chauhan, V. Verma, D. Kumar, and A. Kumar, “Synthesis, antimicrobial evaluation and docking study of triazole containing triaryl-1H-imidazole,” Synth. Commun., vol. 49, no. 11, pp. 1427–1435, 2019, doi: 10.1080/00397911.2019.1600192. |
[26] | A. A. Marzouk et al., “Design, synthesis and anticonvulsant activity of new imidazolidindione and imidazole derivatives,” Bioorg. Chem., vol. 101, p. 104020, 2020, doi: 10.1016/j.bioorg.2020.104020. |
[27] | S. Ç. Yavuz, S. Akkoç, and E. Sarıpınar, “The cytotoxic activities of imidazole derivatives prepared from various guanylhydrazone and phenylglyoxal monohydrate,” Synth. Commun., vol. 49, no. 22, pp. 3198–3209, 2019, doi: 10.1080/00397911.2019.1661481. |
[28] | P. Sharma, C. Larosa, J. Antwi, R. Govindarajan, and K. A. Werbovetz, “Imidazoles as potential anticancer agents: An update on recent studies,” Molecules, vol. 26, no. 14, 2021, doi: 10.3390/molecules26144213. |
[29] | Y. Liu, Q. Rong, C. Chen, and Y. L. Hu, “Novel and reusable mesoporous silica supported 4-methylbenzenesul-fonate-functionalized ionic liquids for room temperature highly efficient preparation of 2,4,5-triaryl-1H-imidazoles,” J. Mex. Chem. Soc., vol. 65, no. 4, pp. 535–549, 2021, doi: 10.29356/jmcs.v65i4.1529. |
[30] | J. Jayabharathi, C. Karunakaran, V. Kalaiarasi, and P. Ramanathan, “Donor-acceptor binding interaction of 1-(naphthalene-1-yl)-2,4,5-triphenyl-1H-imidazole with semiconductor nanomaterials,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 137, pp. 333–337, 2015, doi: 10.1016/j.saa.2014.08.048. |
[31] | S. Naidoo and V. Jeena, “One-Pot, Two-Step Metal and Acid-Free Synthesis of Trisubstituted Imidazole Derivatives via Oxidation of Internal Alkynes Using an Iodine/DMSO System,” European J. Org. Chem., vol. 2019, no. 5, pp. 1107–1113, 2019, doi: 10.1002/ejoc.201801584. |
[32] | D. Sinha, S. Biswas, M. Das, and A. Ghatak, “An eco-friendly, one pot synthesis of tri-substituted imidazoles in aqueous medium catalyzed by RGO supported Au nano-catalyst and computational studies,” J. Mol. Struct., vol. 1242, p. 130823, 2021, doi: 10.1016/j.molstruc.2021.130823. |
[33] | K. Anandhan et al., “1H-NMR, Photophysical, and pH Studies of 4-(4,5-Diphenyl-1H-imidazol-2-yl)benzaldehyde through Experimental and DFT Theoretical Analysis,” ChemistrySelect, vol. 5, no. 1, pp. 415–425, 2020, doi: 10.1002/slct.201904505. |
[34] | A. E. Castillo et al., “Spectroscopic characterization of 4,5-diphenyl-2-(2,4,5-trimethoxyphenyl)-1H-imidazole obtained from the condensation of benzyl. Experimental and DFT approach,” J. Mol. Struct., vol. 1246, p. 131269, 2021, doi: 10.1016/j.molstruc.2021.131269. |
[35] | S. A. Gandhi, U. H. Patel, R. D. Modh, Y. Naliyapara, and A. S. Patel, “Quantum Chemical Calculations (Ab Initio & DFT), Hirshfeld Surface Analysis, Crystal Structure and Molecular Docking Study of 2-Chloro-4-(4-fluoro-phenyl)-6-isopropyl-pyrimidine-5-carboxylic Acid Methyl Ester,” J. Chem. Crystallogr., vol. 46, no. 10–12, pp. 387–398, 2016, doi: 10.1007/s10870-016-0668-5. |
[36] | K. Govindarasu, E. Kavitha, and N. Sundaraganesan, “Synthesis, structural, spectral (FTIR, FT-Raman, UV, NMR), NBO and first order hyperpolarizability analysis of N-phenylbenzenesulfonamide by density functional theory,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 133, pp. 417–431, 2014, doi: 10.1016/j.saa.2014.06.040. |
[37] | H. F. Clausen, M. S. Chevallier, M. A. Spackman, and B. B. Iversen, “Three new co-crystals of hydroquinone: Crystal structures and Hirshfeld surface analysis of intermolecular interactions,” New J. Chem., vol. 34, no. 2, pp. 193–199, 2010, doi: 10.1039/b9nj00463g. |
[38] | S. Riahi, M. R. Ganjali, A. B. Moghaddam, and P. Norouzi, “Molecular geometry, vibrations and electrode potentials of 2-(4,5-dihydroxy-2-methylphenyl)-2-phenyl-2H-indene-1,3-dione; experimental and theoretical attempts,” J. Mol. Model., vol. 14, no. 4, pp. 325–333, 2008, doi: 10.1007/s00894-008-0273-4. |
[39] | S. Muthu and E. Isac Paulraj, “Spectroscopic and molecular structure (monomeric and dimeric structure) investigation of 2-[(2-hydroxyphenyl) carbonyloxy] benzoic acid by DFT method: A combined experimental and theoretical study,” J. Mol. Struct., vol. 1038, pp. 145–162, 2013, doi: 10.1016/j.molstruc.2013.01.043. |
[40] | S. Panchapakesan, K. Subramani, and B. Srinivasan, “Growth, characterization and quantum chemical studies of an organic single crystal: 3-Aminopyridine 4-Nitrophenol for opto-electronic applications,” J. Mater. Sci. Mater. Electron., vol. 28, no. 8, pp. 5754–5775, 2017, doi: 10.1007/s10854-016-6247-x. |
[41] | M. Karabacak, M. Cinar, and M. Kurt, “DFT based computational study on the molecular conformation, NMR chemical shifts and vibrational transitions for N-(2-methylphenyl) methanesulfonamide and N-(3-methylphenyl) methanesulfonamide,” J. Mol. Struct., vol. 968, no. 1–3, pp. 108–114, 2010, doi: 10.1016/j.molstruc.2010.01.033. |
[42] | M. Karabacak, M. Çinar, A. Çoruh, and M. Kurt, “Theoretical investigation on the molecular structure, Infrared, Raman and NMR spectra of para-halogen benzenesulfonamides, 4-X-C6H4SO2NH2 (X = Cl, Br or F),” J. Mol. Struct., vol. 919, no. 1–3, pp. 26–33, 2009, doi: 10.1016/j.molstruc.2008.08.007. |
[43] | S. Chandran, R. Paulraj, and P. Ramasamy, “Structural, optical, thermal, photoconductivity, laser damage threshold and fluorescence analysis of an organic material: β-P-amino benzoic acid single crystal,” Opt. Mater. (Amst)., vol. 52, pp. 49–55, 2016, doi: 10.1016/j.optmat.2015.11.044. |
[44] | K. Sambathkumar, S. Jeyavijayan, and M. Arivazhagan, “Electronic structure investigations of 4-aminophthal hydrazide by UV-visible, NMR spectral studies and HOMO-LUMO analysis by ab initio and DFT calculations,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 147, pp. 124–138, 2015, doi: 10.1016/j.saa.2015.03.012. |
[45] | M. Prabhaharan, A. R. Prabakaran, S. Gunasekaran, and S. Srinivasan, “DFT studies on vibrational spectra, HOMO-LUMO, NBO and thermodynamic function analysis of cyanuric fluoride,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 136, no. PB, pp. 494–503, 2015, doi: 10.1016/j.saa.2014.09.062. |
[46] | S. Muthu, E. Elamurugu Porchelvi, M. Karabacak, A. M. Asiri, and S. S. Swathi, “Synthesis, structure, spectroscopic studies (FT-IR, FT-Raman and UV), normal coordinate, NBO and NLO analysis of salicylaldehyde p-chlorophenylthiosemicarbazone,” J. Mol. Struct., vol. 1081, pp. 400–412, 2015, doi: 10.1016/j.molstruc.2014.10.024. |
[47] | N. Uludağ and G. Serdaroğlu, “An improved synthesis, spectroscopic (FT-IR, NMR) study and DFT computational analysis (IR, NMR, UV–Vis, MEP diagrams, NBO, NLO, FMO) of the 1,5-methanoazocino[4,3-b]indole core structure,” J. Mol. Struct., vol. 1155, no. November 2017, pp. 548–560, 2018, doi: 10.1016/j.molstruc.2017.11.032. |
[48] | M. S. Almutairi et al., “Spectroscopic (FT-IR, FT-Raman, UV, 1H and 13C NMR) profiling and computational studies on methyl 5-methoxy-1H-indole-2-carboxylate: A potential precursor to biologically active molecules,” J. Mol. Struct., vol. 1133, no. 2017, pp. 199–210, 2017, doi: 10.1016/j.molstruc.2016.12.004. |
[49] | B. Edwin, M. Amalanathan, and I. Hubert Joe, “Vibrational spectra and natural bond orbital analysis of organic crystal l-prolinium picrate,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 96, pp. 10–17, 2012, doi: 10.1016/j.saa.2012.04.062. |
[50] | K. R. Ansari and M. A. Quraishi, “Experimental and computational studies of naphthyridine derivatives as corrosion inhibitor for N80 steel in 15% hydrochloric acid,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 69, pp. 322–331, 2015, doi: 10.1016/j.physe.2015.01.017. |
[51] | M. Karnan, V. Balachandran, and M. Murugan, “Vibrational spectroscopic (FT-IR and FT-Raman) studies, natural bond orbital analysis and molecular electrostatic potential surface of 3-hydroxy-6-methyl-2-nitropyridine,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 96, pp. 51–62, 2012, doi: 10.1016/j.saa.2012.05.007. |
[52] | T. Ghailane et al., “Experimental and theoretical studies for mild steel corrosion inhibition in 1M HCl by two new benzothiazine derivatives,” Corros. Sci., vol. 76, pp. 317–324, 2013, doi: 10.1016/j.corsci.2013.06.052. |