[1] | W. Kaiser, C. G. B. Garrett, "Two-photon excitation in CaF2: Eu2+," Phys. Rev. Lett. 7 (1961) 229-230. |
[2] | R. K. Brow, “Review: the structure of simple phosphate glasses,” J. Non-Cryst. Solids 263-264 (2000) 1–28. |
[3] | E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, A. M. Prokhorov, “CW high power 1.24 m and 1.48 m Raman lasers based on low loss phosphate fibre,” Electron. Lett., 33 (1997) 1542-1544. |
[4] | L. Petit, T. Cardinal, J. J. Videau, F. Smektala, T. Jouan, K. Richardson, A. Schulte, “Fabrication and characterization of new Er3+ doped niobium borophosphate glass fiber,” Mater. Sci. Eng. B 117 (2005) 283–286. |
[5] | M. Jayasimhadri, K. Jang, H. S. Lee, B. Chen, S. S. Yi, J-H. Jeong, “White light generation from Dy3+-doped ZnO-B2O3-P2O5 glasses,” J. Appl. Phys. 106 (2009) 013105-4. |
[6] | V. Nazabal, E. Fargin, C. Labrug, G. Le Flem, “Second harmonic generation optimization in thermally poled borophosphate glasses and characterization by XANES and XPS,” J. Non-Cryst. Solids 270 (2000) 223–233. |
[7] | D. Kim, C. Hwang, D. Gwoo, T. Kim, Y. Kim, N. Kim, B. K. Ryu, “Synthesis and characterization of CdS nanocrystals in a novel phosphate glass,” Electronic Mat. Lett. 7 (2011) 309-312. |
[8] | G. Tripathi, V. K. Rai, S.B. Rai, “Spectroscopy and upconversion of Dy3+ doped in sodium zinc phosphate glass,” Spectrochimica Acta A 62 (2005) 1120-1124. |
[9] | T. Cardinal, E. Fargin, G. Le Flem, S. Leboiteux, “Correlations between structural properties of Nb2O5-NaPO3-Na2B4O7 glasses and non-linear optical activities”, J. Non-Cryst. Solids 222 (1997) 228-234. |
[10] | M. Dussauze, O. Bidault, E. Fargin, M. Maglione, V. Rodriguez, “Dielectric relaxation induced by a space charge in poled glasses for nonlinear optics,” J. Appl. Phys. 100 (2006) 034905-7. |
[11] | E. T. Y. Lee, E. R. M. Taylor, “Compositional effects on the optical and thermal properties of sodium borophosphate glasses,” J. Phys. Chem. Solids 66 (2005) 47–51. |
[12] | P. Chen, S. Li, W. Qiao, Y. Li, “Structure and crystallization of ZnO–B2O3–P2O5 Glasses,” Glass Phys. Chem. 37 (2011) 29–33. |
[13] | S. Ibrahim, M. Abdel-Baki, F. El-Diasty, “Zinc borophosphate glasses for infrared-based optical applications,” Opt. Eng. 51 (2012) 093401-7. |
[14] | S. Şimşek, "A novel method for designing one dimensional photonic crystals with given bandgap characteristics," AEU – Inter. J. Electron. Commun. 67 (2013) 827-832. |
[15] | J. Tauc, “Amorphous and Liquid Semiconductors,” Plenum Press, London, New York (1974) p. 159. |
[16] | N. F. Mott and E. A. Davis, “Electronic Processes in Non-Crystalline Materials,” Clarendon Press, Oxford (1979) p. 272. |
[17] | E. M. van Stryland, M. A. Woodall, H. Vanherzeele, M. J. Soileau, "Energy band-gap dependence of two-photon absorption," Opt. Lett. 10 (1985) 490-492. |
[18] | M. Weiler, “Nonparabolicity and exciton effects in two-photon absorption in zincblende semiconductors,” Solid State Commun. 39 (1981) 937-940. |
[19] | B. S. Wherrett, “Scaling rules for multiphoton interband absorption in semiconductors,” J. Opt. Soc. Am. B 1 (1984) 67-72. |
[20] | C. Ghezzi, R. Magnanini, A. Parisini, B. Rotelli, L. Tarricone, A. Bosacchi, S. Franchi, "Optical absorption near the fundamental absorption edge in GaSb," Phy. Rev. B 52 (1995) 1463-1466. |
[21] | R. J. Elliott, "Intensity of optical absorption by excitons," Phy. Rev. 108 (1957) 1384-1389. |
[22] | A. Manoogian, J. C. Woolly, "Temperature dependence of the energy gap in semiconductors," Can. J. Phys. 62 (1984) 285-287. |
[23] | L. Roa, C. Rincon, J. Gonzalez, M. Quintero, "Analysis of direct exciton transitions in CuGa(SxSe1−x)2 alloys," J. Phys. Chem. Solids 51 (1990) 551-555. |
[24] | G. Marin, C. Rincon, S. M. Wasim, C. Power, G. Sanchez Perez, "Temperature dependence of the fundamental absorption edge in CuInTe2," J. Appl. Phys. 81 (1997) 7580-7583. |
[25] | U. Hoppe, G. Walter, D. Stachel, A. C. Hannen, “Short-range order details of metaphosphate glasses studied by pulsed neutron scattering,” Z. Naturforsch. A 50 (1995) 684-690. |
[26] | A. Marotta, A. Buri, F. Branda, P. Pernice, A. Aronne, “Structure and devitrification behaviour of sodium, lithium and barium borophosphate glasses,” J. Non-Cryst. Solids 95-96 (1987) 593-599. |
[27] | S. Elbers, W. Strojek, L. Koudelka, H. Eckert, “Site connectivities in silver borophosphate glasses: new results from 11B{31P} and 31P{11B} rotational echo double resonance NMR spectroscopy,” Solid State Nucl. Magn. Reson. 27 (2005) 65-76. |
[28] | V. Dimitrov, T. Komatsu, “An interpretation of optical properties of oxides and oxides glasses in terms of the electronic polarizability and average single bond strength (review),” J. Univ. Chem. Technol. Metal. 45 (2010) 129-250. |
[29] | F. El-Diasty, F. A. Moustafa, F. A. Abdel-Wahab, M. Abdel-Baki, A. M. Fayad, "Role of 4p-3d orbital hybridization on band gap engineering of heavy metal glass for optoelectronic applications," J. Alloy. Comp. 601 (2014) 157-163. |
[30] | F. A. Moustafa, M. Abdel-Baki, A. M. Fayad, F. El-Diasty, "Role of mixed valence effect and orbital hybridization on molar volume of heavy metal glass for ionic conduction pathways augmentation," Am. J. Mater. Sci. 4 (2014) 119-126. |
[31] | M. Abdel-Baki, F. El-Diasty, “Role of oxygen on the optical properties of borate glass doped with ZnO,” J. Solid State Chem. 43 (2011) 2762-2769. |
[32] | J. A. Duffy, Phys. "Ultraviolet transparency of glass: a chemical approach in terms of band theory, polarisability and electronegativity," Chem. Glasses 42 (2001) 151-157. |
[33] | G. Fuxi, “Optical and Spectroscopic Properties of Glass,” Springer, Berlin, 1992, p. 62. |
[34] | M. Abdel-Baki, F. Abdel Wahab, F. El-Diasty, “One-photon band gap engineering of borate glass doped with ZnO for photonics applications,” J. Appl. Phys. 111 (2012) 073506. |
[35] | S. Levcenko, N. N. Syrbu, A. Nateprov, E. Arushanov, J. M. Merino, M. Leon, "Optical properties of CuGa3Se5 single crystals," J. Phys. D 39 (2006) 1515-1520. |
[36] | G. Marin, C. Rincon, S. M. Wasim, G. Sanches Perez, I. Molina, "Temperature dependence of the fundamental absorption edge in CuGa3Se5," J. Alloys Compd. 283 (1999) 1-4. |
[37] | M. Fox, “Optical Properties of Solids,” Oxford University Press (2003) pp. 78. |
[38] | N. Finlayson, W. C. Banyai, C. T. Seaton, G. L. Stegeman, M. O’Neill, T. G. Cullen, C. N. Ironside, "Optical nonlinearities in CdSxSe1−x-doped glass waveguides," J. Opt. Soc. Am. B 6 (1989) 675-684. |
[39] | V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, M. J. Andrejco, "Two-photon absorption as a limitation to all-optical switching," Opt. Lett. 14 (1989) 1140-1142. |
[40] | J. T. Gopinath, M. Soljaèiæ, E. P. Ippen, V. N. Fuflyigin, W. A. King, M. Shurgalin, "Third order nonlinearities in Ge-As-Se -based glasses for telecommunications applications," J. Appl. Phys. 96 (2004) 6931-9633. |
[41] | M. Sheik-Bahae, D. J. Hagan, and E. W. Van Stryland, “Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65 (1990) 96-99. |
[42] | M. Sheik-Bahae, E. W. Van Stryland, "Semiconductors and Semimetals," edited by E. Garmire and A. Kost _Academic, San Diego, (1999) Vol. 58, Chap. 4. |
[43] | E. M. van Stryland, M. A. Woodall, H. Vanherzeele, M. J. Soileau, "Energy band-gap dependence of two-photon absorption," Opt. Lett. 10 (1985) 490-492. |
[44] | M. Weiler, “Nonparabolicity and exciton effects in two-photon absorption in zincblende semiconductors,” Solid State Commun. 39 (1981) 937-940. |
[45] | B. S. Wherrett, “Scaling rules for multiphoton interband absorption in semiconductors,” J. Opt. Soc. Am. B 1 (1984) 67-72. |
[46] | F. El-Diasty, M. Abdel-Baki, "One- and two-photon absorption in transition metal oxide glasses," J. Appl. Phys. 106 (2009) 05321. |
[47] | C. N. Ironside, “2-Photon Gain Semiconductor Amplifier,” IEEE J. Quantum Electron. 28 (1992) 842–847. |
[48] | A. Agarwal, V. P. Seth, S. Sanghi, P. Gahlot, D. R. Goyal, "Optical band gap studies and estimation of two photon absorption coefficient in alkali bismuth borate glasses," Rad. Eff. Def. Solids 158 (2003) 793–801. |
[49] | Y. Watanabe, H. Miyazawa, T. Tsuchiya, "Degenerate two‐photon absorption in lead borotellurite glasses at 532 nm," J. Appl. Phys. 80 (1996) 1979-1984. |
[50] | Y. Watanabe, S. Sakata,Y. Watanabe, T. Tsuchiya, "Two-photon absorption in binary Bi2O3–B2O3 glass at 532 nm," J. Non-Cryst. Solids 240 (1998) 212-220. |
[51] | C. M. Cirloganu, L. A. Padilha, D. A. Fishman, S. Webster, D. J. Hagan, E. W. Van Stryland, "Extremely nondegenerate two-photon absorption in direct-gap semiconductors," Opt. Exp. 19 (2011) 22951-22960. |
[52] | T. K. Liang, H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84 (2004) 2745- 2747. |