American Journal of Condensed Matter Physics
p-ISSN: 2163-1115 e-ISSN: 2163-1123
2013; 3(5): 123-132
doi:10.5923/j.ajcmp.20130305.02
R. P. Singh1, V. K. Singh1, R. K. Singh1, M. Rajagopalan2
1Department of Physics, Banaras Hindu University, Varanasi, India
2Department of Physics, Anna University, Chennai, India
Correspondence to: R. K. Singh, Department of Physics, Banaras Hindu University, Varanasi, India.
| Email: | ![]() |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
First principle calculations using the full-potential augmented plane-waves plus local orbital (FP-APW + lo) within density-functional theory (DFT) have been carried out to study the elastic, acoustical and electronic properties of R-Cu and R-Zn (R= Dy, Ho, Er) intermetallic compounds. Acoustic velocities are found to increase for both groups of intermetallics. The band structure and density of states histograms are plotted. From the density of states (DOS) histograms, we find that total density of states (DOS) near Fermi level is mostly dominated by R-atom (R= Dy, Ho, Er, Tm) and DOS below the Fermi level are mainly due to “3d” orbital electrons of Cu (or Zn).
Keywords: Intermetallic Compounds, Elastic Properties, Acoustical Properties, Electronic Properties
Cite this paper: R. P. Singh, V. K. Singh, R. K. Singh, M. Rajagopalan, Elastic, Acoustical and Electronic Behaviour of the RM (R = Dy, Ho, Er; M=Cu, Zn) Compounds, American Journal of Condensed Matter Physics, Vol. 3 No. 5, 2013, pp. 123-132. doi: 10.5923/j.ajcmp.20130305.02.
) and density (ρ). (e) Electronic properties: Charge density distribution, Density of States (DOS) and Band Structure.Attempt has been made to establish a structure-property correlation. Particularly emphasis is to see how the properties change as one of the constitutent atoms is changed in a particular group of materials. For example the properties of R-Cu and R-Zn follow a sequential behavior as we change R from Dy→Ho→Er.
The elastic constants (C11, C12 and C44) have been calculated by means of crystal strained method[29]. Using the three elastic constants, the elastic parameters viz. bulk modulus (B) Young’s modulus (Y) isotropic shear modulus (G) and Poisson ratio, (
) can be calculated using the following explicit expressions[30, 31]:![]() | (1) |
is Voigt’s shear modulus corresponding to the upper bound of G values, and
is Reuss’s shear modulus for cubic crystals corresponding to the lower bound values, expressed as: ![]() | (2) |
![]() | (3) |
![]() | (4) |
![]() | (5) |
![]() | (6) |
![]() | (7) |
![]() | (8) |
[33] and Grüneisen parameter,
[34] are sound velocity and mass density dependent, which are calculated using the expressions given by![]() | (9) |
and n, Na, ρ and M,
are the number of atoms in the molecule, Avogadro’s number, mass density, molecular weight and Boltzmann constant respectively.The Grüneisen parameter (which provides anharmonicity) of crystals is given by:![]() | (10) |
![]() | (11a) |
![]() | (11b) |
![]() | Figure 1. Total equilibrium energy as a function of volume for (a) DyCu and (b) DyZn with GGA calculation |
and
are the energy and volume at equilibrium.
and
are the equilibrium bulk modulus and its first order pressure derivative.The energy vs. volume curve has been shown for DyCu and DyZn in Figures 1(a) and 1(b) respectively (while for others R-Cu and R-Zn compound only the equilibrium energy and volume have been shown in Table 1). It is obvious from Figures 1(a) and 1(b) and Table 1 that equilibrium volume and lattice parameters decrease as we go from DyCu to ErCu (or DyZn to ErZn) due to increasing f-orbital electrons from DyCu to ErCu (or DyZn to ErZn) (i.e. bonding states are being filled). Calculated ground state lattice parameter (ao), bulk modulus (Bo) and its first order pressure derivative (B0’), obtained using GGA approximation are shown in Table 1. Calculated values of ao and B0 for R-Cu and R-Zn are found to be in good agreement with available experimental values[7, 8, 37].
at equilibrium for RM intermetallics (R=Dy, Ho, Er and M= Cu, Zn) using PBE-GGA approximations have been given in Tables 2. Experimental values of C11 - C12 and C44 determined by ultrasonic measurement techniques[10, 37-39] for DyCu, DyZn, HoZn, ErZn compounds are available in literature, which show close agreement with present calculated values.Values of Cij, B, Y and G are increasing in R-Cu and R-Zn intermetallic series as R changes in sequence Dy → Ho → Er. Our C44 and C11-C12 values are underestimated and overestimated respectively by about ∼15% and ∼22 % respectively for DyCu compared to the experimental value of Wohalfarath et al.[10], while C44 value is underestimated by about ∼14% to the experimental value of Yasui et al.[39]. Present value of bulk modulus for DyCu is in close agreement with available experimental value of Yasui et al.[39].Present C44 and C11-C12 values for DyZn and HoZn are underestimated and overestimated respectively by ∼30%, ∼20%; and ∼20%, ∼1%, while for ErZn, these values are underestimated by ∼19% and ∼11% respectively compared to the experimental values of Wohalfarth et al.[10]. The minor difference between experimental values and our calculated values may be attributed to the reason that available experimental values are given at room temperature, while our values are in equilibrium state. Furthermore, the structural stability conditions (C11 - C12 > 0, C11 > 0, C44 > 0, C11 + 2C12 > 0) are satisfied for calculated elastic moduli[40]. Besides above stability conditions, present calculated elastic moduli satisfy the condition C12 < B < C11 (applicable to cubic systems). This gives credence to our calculated values of elastic moduli.The B/G value is an index of ductility for metallic / intermetallic materials, proposed by Pugh[41] to predict brittle or ductile behaviors of the materials. If B / G > 1.75, then ductile behavior is predicted, otherwise, the material behavior is brittle in manner. The B/G ratio of R-Cu and R-Zn compounds is greater than 1.75 (Tables 2). Therefore, all RM compounds are ductile and R-Cu compounds are more ductile than R-Zn compounds as R-Cu compounds have large value of B/G than R-Cu. The calculated data on acoustic velocities (VL and VS and Vm), Debye temperature (θD), Grüneisen parameter (
) for R-Cu and R-Zn which are important to describe anharmonic properties of the compounds have been given in Table 3. The calculated values of mass density (ρ) for R-Cu and R-Zn have also been given in Table 3.
|
|
![]() | Figure 2. Contour plot of the total valance charge density in the (100) plane for (a) DyCu (b) DyZn |
![]() | Figure 3. 3-dimentional plots of the total valance charge density in the (100) plane for (a) DyCu (b) DyZn |
![]() | Figure 4. Calculated density of states (a) total density of states for DyCu, Dy and Cu (b) density of s-states for Dy and Cu (c) density of p-states for Dy and Cu (d) density of d-states for Dy and Cu (e) density of f-states for Dy |
![]() | Figure 5. Calculated density of states (a) total density of states for DyZn, Dy and Zn (b) density of s-states for Dy and Zn (c) density of p-states for Dy and Zn (d) density of d-states for Dy and Zn (e) density of f-states for Dy |
![]() | Figure 6. Electron dispersion curves along high symmetry direction in the Brilloun zone for DyCu and DyZn with GGA calculation |
and density, ρ) of CsCl type compounds, R-Cu and R-Zn (R= Dy, Ho, Er). The following conclusions have been drawn from the calculations;(a) Structural parameters (a0, B0 and B0’) and elastic constants (Cij) are in good agreement with available experimental literature values.(b) Calculated elastic constants obey the structural stability conditions (C11 - C12 > 0, C11 > 0, C44 > 0, C11 + 2C12 > 0) and (C12 < B < C11.) which gives credence to our calculated values.(c) Acoustic velocities (VL, VS and Vm) increase for both group of intermetallics viz. R-Cu and R-Zn.(d) B/G ratio > 1.75, so, ductile character of R-Cu and R-Zn predicted and R-Cu are more ductile compared to corresponding member of R-Zn.(e) The charge density in the vicinity of Cu (or Zn) is larger than that of R atoms (R= Dy, Ho, Er).(f) Total density of states (DOS) near Fermi level is mostly dominated by R-atom and DOS below the Fermi level are mostly dominated by Cu (or Zn).(g) Partial density of states for R-Cu (or R-Zn) shows that DOS below Fermi level are mainly due to “3d” orbital electrons of Cu (or Zn).(h) Electronic conduction in R-Cu and R-Zn compounds is due to “3d” orbital electrons. (i) In band structure diagram, conduction and Valence bands are overlapping near the Fermi level which reflects metallic character of R-Cu and R-Zn.| [1] | A. M. Russell, Adv. Engg. Mat. 5 (2003) 629. |
| [2] | A. M. Russell, Z. Zhang, T. A. Lograsso, C. H. C. Lo, A. O. Pecharsky, J. R. Morris, Y. Y. Ye, K. A. Gschneidner Jr. and A. J. Slager, Acta Mater. 52, (2004) 4033. |
| [3] | K. A. Gschneidner Jr., A. M. Russell, A. O. Pecharsky, Z. Zhang, T. A. Lograsso, J. R. Morris, D. K. Hsu, C. H. C. Lo, Y. Y. Ye, A. J. Slager, D. C. Kesse, Nature Mater. 2 (2003) 591. |
| [4] | K.A. Gschneidner Jr., A. M. Russell, S. B. Biner, C.H.C. Lo, T. A. Lograsso, Y. Ye, D. Barnard, A. O. Tsokol, U. S. Department of Energy, Basic Energy Science (2004). |
| [5] | K. A. Gschneidner Jr., A. M. Russell, S. B. Biner, B. N. Harmon, D. K. Hsu, C. H. C. Lo, T. A. Lograsso, A. O. Pecharsky. U. S. Department of Energy, Basic Energy Science (2005). |
| [6] | W. J. Cable, W. C. Koehler, E. O. Wollan, Phys. Rev. 136 (1964) A240. |
| [7] | C. C. Chao, H. L. Luo, P. Duwez, J. Appl. Phys. 34 (1963) 1971. |
| [8] | P. Morin, S. J. Williamson, Phys. Rev. B 29 (1984) 1425. |
| [9] | P. Morin, J. Rouchy, E. Du Tremolet de Lacheisserie, Phys. Rev. B 16 (1977) 3182. |
| [10] | E. P. Wohalfarth, K. H. J. Buschow, 5 (1990) ISBN: 978-0-444-87477-1. |
| [11] | Y. N. Berdovsky, Nova Science Publishers, Inc. New York, (2008). |
| [12] | Y. R. Morris, Y. Y. Ye, Y. B. Lee, B. N. Harmon, K. A. Gschneidner Jr., A. M. Russell, Acta. Mater. 52 (2004) 4849. |
| [13] | A. R. Cause, E. Teghtsoonian, Matell. Trans. 1 (1970) 1177. |
| [14] | J. Rusz, I. Turek, M. Divis, Physica B 381 (2006) 265. |
| [15] | J. B. Sousa, P. P. Pinto, M. M. Amado, I. M. Moreira, M. E. Braga, P. Morin, M. Ausloos, J Phys F: Met Phys 10 (1980) 1809. |
| [16] | G. H. Cao, D. Shechtman, D.M. Wu, A.T. Becker, L.S. Chumbley, T.A. Lograsso, A. M. Russell, K. A. Gschneidner, Acta Mater. 55 (2007) 3765. |
| [17] | C. Chang-Chih, J. Appl. Phys. 37 (1966) 2081. |
| [18] | J. M. D. Coey, J. Appl. Phys. 49 (1978) 1646. |
| [19] | N. Heiman, N. Kazama, J. Appl. Phys. 49 (1978) 1686. |
| [20] | B. Tissier, R. Buder, J. M. D. Coey, J. Magn. and Magn. Mater. 15 (1980)1393. |
| [21] | A. S. Chernyshov, A. O. Tsokol, A. M. Tishin, K. A. Gschneidner Jr., V. K. Pecharsky, Phys. Rev. B 71 (2005) 184410. |
| [22] | V. K. Pecharsky, K. A. Gschneidner Jr., Intern. J. Refrig. 29 (2006) 1239. |
| [23] | Z. Zhang, A. M. Russell, S. B. Biner, K. A. Gschneidner Jr., C. H. C. Lo, Intermetallics 13 (2005) 559. |
| [24] | Oak Ridge National Laboratory, Status and Progress Report, Union Carbide Corporation for the U.S. Atomic Energy Commission (1964). |
| [25] | J. P. Perdew and K. Burke, Phys. Rev. Lett. 77 (1996) 3865. |
| [26] | E. Sjostedt, L. Nordstrom, D. J. Singh, Sol. Stat. Commun 114 (2000)15. |
| [27] | K. Schwarz, P. Blaha, G. K. H. Madsen, Comput. Phys. Commun. 147 (2002) 71. |
| [28] | H. J. Monkhorst, J. D. Pack, Phys. Rev. B 13 (1976) 5188. |
| [29] | T. Charpin, Laboratory of geometrix F-75252 Paris, France A package for Calculating elastic tensors of cubic phase using WIEN (2001). |
| [30] | M. Moakafi, R. Khenata, A. Bouhemadou, F. Semari, A. H. Reshak, M. Rabah. Comput. Mat. Sci. 46 (2009)1051. |
| [31] | F. Kalarasse, L. Kalarasse, B. Bennecer, A. Mellouki. Comput. Mat. Sci. 47 (2010) 869. |
| [32] | P. V. Reddy, M. B. Reddy, V. N. Muley, K. B. Reddy, Y. V. Ramana. J. Mat. Sc. Lett. 7(1988) 1243 |
| [33] | R.P. Singh, R.K. Singh, M. Rajagopalan, Intermetallics 19 (2011) 1359. |
| [34] | V. N. Belomestnykh, Tech. Phys. Lett. 30 (2) (2004) 91. |
| [35] | F. Birch, Phys. Rev. 71 (1947) 809. |
| [36] | F. D. Murnaghan, Proc. Nat. Acad. Sci. U.S.A 30 (1944) 244. |
| [37] | P. Morin, A. Waintal, B. Luthi, Phys. Rev. B. 14 (1976) 2972. |
| [38] | C. Jaussaud, P. Morin and D. Schmitt, J. Magnetism and Mag. Mat. 22 (1980) 98. |
| [39] | F. El Haj Hassan, A. Zaoui, W. Sekkal, Mat. Sci. and Engg. B87 (2001) 40. |
| [40] | M. Yasui, T. Terai, T. Kakeshita, M. Hagiwara, J. Phys. Conf. series 165 (2009) 012059. |
| [41] | S. F. Pugh, Philos. Mag. 45, (1954) 823. |