[1] | (a) P. Kapitza, Nature 141 (1938), 74-74, (b) J.F. Allen and A.P. Misener, Nature 141 (1938), 75-75. |
[2] | (a) J. Wilks, The properties of Liquid and Solid Helium. Clarendon Press, Oxford (1967).(b) J. Wilks and D.S. Betts, An Introduction to Liquid Helium. Clarendon Press, Oxford (1987). |
[3] | Z.M. Galasiewics, Helium 4. Pergamon, Oxford (1971). |
[4] | A.D.B. Woods and R.A. Cowley, Rep. Prog. Phys. 36 (1973), 1135-1231. |
[5] | S.J. Putterman, Superfluid Hydrodynamics North -Holland, Amsterdam (1974). |
[6] | (a) L.D. Landau, J. Phys. (USSR) 5 (1941), 71; Reprinted in English in Ref.[3] pp 191-233, (b) L.D. Landau, J. Phys. (USSR) 11 (1947), 91; Reprinted in English in Ref.[3] pp 243-246. |
[7] | (1) Superfluid of viscosity η = 0 and entropy S = 0 and (2) Normal fluid of η = 0 and S = 0. |
[8] | N.N. Bogoliubov, J, Phys. (USSR) 11 (1947), 23; Reprinted in English in Ref.[3], pp 247-267. |
[9] | R.K. Pathria, Statistical Mechanics, Pergamon Press Oxford (1976). |
[10] | In what follows from the theory of Bose Einstein condensation[9], a system of non-interacting bosons (SNIB) has an onset of p = 0 condensate, -a macroscopic number of particles (Np=0) occupying single particle state of p = 0 at certain T = TBEC on cooling the system. Np=0(T) rises smoothly from Np=0(TBEC) = 0 to Np=0(0) = N. According to Bogoliubov[8], hard core repulsion depletes Np=0(T) by pushing N -Np=0(T) particles in higher energy states of p ≠ 0. |
[11] | F. London, Nature 141 (1938), 643-644; Phys. Rev. 54 (1938), 947-954; Superfluid, Wiley, New York (1950). |
[12] | R.P. Feynman, Phys. Rev. 91 (1953), 1291-1301. |
[13] | R.P. Feynman, Phys. Rev. 91 (1953), 1301-1308. |
[14] | R.P. Feynman, Phys. Rev. 94 (1954), 262-277. |
[15] | R.P. Feynman, Applications of Quantum Mechanics to Liquid Helium, Progress in Low Temperature Physics (C.J. Gorter, editor). 1 (1954),17-53, North-Holland, Amsterdam, Chapter II. |
[16] | M. Cohen and R.P. Feynman, Phys. Rev 102 (1956), 1189-1204. |
[17] | M. Cohen and R.P. Feynman, Phys. Rev 107 (1957), 13-24. |
[18] | A. Fetter and J. Walecka, Quantum Theory of Many Particle System McGraw-Hill, New York (1971). |
[19] | E. Feenberg, Theory of Quantum Fluids Academic Press, New York (1969). |
[20] | J.G.M. Armitage and I.E. Ferquhar, (eds.): The Helium Liquids. Academic Press, London (1975). |
[21] | K.H. Benneman and J.B. Ketterson, (eds.): The Physics of Liquid and Solid Helium, Part-I. Wiley, New York (1976). |
[22] | C. W. Woo in Ref.[21], pp 349-501 |
[23] | N. Toyoda, Ann. Phys.(NY) 141 (1982), 154-178. |
[24] | D.M. Ceperley, Rev. Mod. Phys. 67 (1995), 279-355. |
[25] | H.R. Glyde and E.C. Svensson, Solid and liquid helium. In D.L. Rice and K. Skold (eds.) Methods of Experimental Physics-Neutron Scattering, vol. 23, Part B, pp 303-403. Academic, San Diego (1987). |
[26] | R.N. Silver and P.E. Sokol (eds.), Momentum Distribution. Plenum Press, New York (1989). |
[27] | R.N. Silver, Superfluid helium and neutron scattering, a new chapter in the condensate saga, in Los Almos Science (No. 19), N.G. Cooper (ed.) (1990), pp 158-179. |
[28] | P.E. Sokol in Bose Einstein Condensation, A. Griffin, D.W. Snoke and A. Stringari (eds.), Cambridge University Press, Cambridge, (1996), pp 51-85. |
[29] | C.H. Aldrich and D. Pines, J. Low Temp. Phys. 25 (1979), 677-690. |
[30] | J.A. Geurst, Physica 153 (1988), 166-180. |
[31] | A. Griffin, Excitations in a Bose condensed liquid, Cambridge University Press, Cambridge, (1993). |
[32] | R.J. Donnelly, Quantized Vortices in Helium II, Cambridge University Press (1991). |
[33] | C.F. Barenghi, R.J. Donnelly and W.F. Vinnen (eds.), Quantized Vortex Dynamics and Superfluid Turbulence, Springer Verlag, Berlin (2001). |
[34] | D.R. Tilley and J. Tilley, Superfluidity and Superconductivity, Adam Hilger, Bristol (1990). |
[35] | T. Guenault, Basic Superfluids, CRC Press (2002). |
[36] | C. Enss and S. Hunklinger, Low Temperature Physics, Springer Verlag, Berlin, (2005). |
[37] | (a) V.L. Ginzburg and L.P. Pitaevskii, On the theory of superfluidity, Zh. Eksp. Teor. Fiz. 34 ((1958), 1240[Sov. Phys. JETP 7 (1958), 858], (b) V.L. Ginzburg and A.A. Sobyanin, Superfluidity of helium II near the λ-point, in Superconductivity, Superdiamagnetism, Superfluidity, V.L. Ginzburg (ed.), p. 242, Mir, Moscow, (1987). (c) V.L. Ginzburg, and A.A. Sobyanin, Superfluidity of helium II near the λ-point, Usp. Fiz. Nauk 154 (1988), 545[Sov. Phys. Usp. 31 (1988), 289]; Japan J. Appl. Phys. 26 (Suppl.26-3) (1987), 1785. (d) V.L. Ginzburg, Rev. Mod. Phys. 76 (2004), 981-998. |
[38] | For example He-II at T = 0 has 10% 4He-atoms as p = 0 condensate and 90% atoms as non-condensate which clearly does not have S = 0. Hence it not clear how such a He-II can conform to S = 0 of superfluid component with ρs(0) = ρ. Similarly, it is also not clear how particles, having different λ due to their different momenta, exhibit coherence of their motion. |
[39] | A.J. Leggett, Rev. Mod. Phys. 71 (1999), S318-S323; an important remark by Prof. Leggett about the existence of p = 0 condensate in He-II is worth quoting. He states, “In the sixty years since London’s original proposal, while there has been almost universal belief that the key to superfluidity is indeed the onset of BEC at Tλ it has proved very difficult, if not impossible, to verify the existence of the latter phenomenon directly. The main evidence for it comes from high energy neutron scattering and, very recently, from the spectrum of atoms evaporated from the liquid surface and while both are certainly consistent with the existence of a condensate fraction of approximately 10%, neither can be said to establish it beyond all possible doubts.” |
[40] | (a) F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71 (1999), 463-512, and Arxiv/Cond -mat/9806038. (b) A. Fetter, Rev. Mod. Phys., 81 (2009), 647. |
[41] | C.J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases, Cambridge University Press, 2002. |
[42] | L. Pitaevskii and S. Stringari, Bose-Einstein Condensation. Oxford Science Publications, 2002. |
[43] | (a) V.A. Zagrebnov and J.-B. Bru, Phys. Rep. 350 (2001), 291-434, (b) S. Adams and J, -B. Bru, Physica A 332 (2003), 60-78, (c) J.V. Pule, A.F. Verbeure and V.A. Zagrebnov, On Solvable Boson Models : www.ma.utexas. edu /mp arc/c/08/08-13.pdf (2007). |
[44] | A.S. Peletminskii and S.V. Peletminskii, Low Temp. Phys. 36 (2010), 693-699. |
[45] | (a) V.I. Yukalov, and H. Kleinert, Phys. Rev. A73 (2006), 063612, (b) V.I. Yukalov, Annals Phys. 323 (2008), 461-499, (c) V.I. Yukalov, Phys. Part. Nucl. 42 (2011), 460-513. |
[46] | (a) E.A. Pashitskii, Low Temp. Phys. 25 (1999), 81-99, (b) E.A. Pashitskii and S.I. Vil’chinskii, Low Temp. Phys. 27 (2001), 185-195, (c) E.A. Pashitskii, S.V. Mashkevich and S.I. Vil’chinskii, Phys. Rev. Lett, 89 (2002), 075301, (d) E.A. Pashitskii, S. I. Vilchinski and A.V. Chumachenko, Low Temp. Phys. 36 (2010), 576-581. |
[47] | (a) G.S. Jeon, L. Yin, S.W. Rhee and D.J. Thouless, Phys. Rev. A 66 (2002), 011603(R), (b) Z. Hao, Theory for superfluidity in a Bose system arxiv:Cond-mat/0807.1503v2 |
[48] | (a) J.G. Valatin, and D. Butler, Nuovo Cimento 10 (1958), 37, (b) W.A.B. Evans and Y. Imry, Nuovo Cimento B 63 (1969), 155, (c) P. Nozieres and D.S. James, J. Physique 43 (1982), 1133. |
[49] | H. Shi and A. Griffin, Phys. Rep. 304 (1998), 1-87. |
[50] | J.O. Anderson, Rev. Mod. Phys. 76, 599-639 (2004). |
[51] | M. D. Tomchenko, Assian J. Phys. 18 (2009), 245-254; Uneven horizon or several words about the superfluid 4He theory, arXiv:0904.4434. |
[52] | K. Huang, Statistical Mechanics, Wiley Eastern Limited, New Delhi (1991), Chapt 13. |
[53] | Y.S. Jain, Cent. Euro J. Phys. 2 (2004), 709-719; a small typographic error in this paper is corrected in its version placed in the archive (arxiv.org/quant-ph/0603233). |
[54] | Since the excitation wave length (Λ) of particles having ε ≥ εc satisfies Λ/2 ≤ σ and two particles cannot have r < σ for their HC nature, it is clear that particles with Λ/2 < σ cannot have positions in agreement with Eqn.29. This means that such particles do not have the correlations of their positions in r−, k− and φ−spaces. |
[55] | O. Penrose and L. Onsager, Phys. Rev. 104 (1956), 576-584. |
[56] | C.N. Yang, Rev. Mod. Phys. 34 ((1962), 694-704. |
[57] | J. Goldstone, N. Cim. 19 (1961), 154-164. |
[58] | P.W. Anderson, Rev. Mod. Phys. 38 (1966), 298-310. |
[59] | G. Taubes, Science 269 (1995), 152-153. |
[60] | Y.S. Jain, Physical behavior of a system representing a particle in a box having flexible size : arXiv/cond- mat.matrl.sci:0807.0732v2.Ref.[9], p 134. |
[61] | V.G. Levich, Theoretical Physics Vol. 4, North-Holland, Amsterdam (1973), pp 12-14. |
[62] | G.E. Uhlenbeck and L. Gropper, Phys. Rev. 41 (1932), 79-90. |
[63] | M. Karplus and R.N. Porter, Atoms and Molecules, The Benjamin/Cummins, Menlo Park (1970) Chapter 6. |
[64] | Y.S. Jain, Macro-orbitals and microscopic theory of a system of interacting bosons,arXiv:cond-mat/0606571. |
[65] | We note that per particle binding energy Eg(T)/N (Eqn. 56) (which is expected to be of the order of |β(T)|) is << kBTo since ∆d/d << d. However, the binding (Eb) of particles in ξ(T)3 volume[with ξ(T) (Eqn.60) being the coherence length], which have coherence of their motion, is estimated to be Eb=−(ξ(T)3/d3)(Eg(T)/N) ≈ −kBTo(ξ(T)/d)3(∆d)/d which is clearly >> kBTλ since ξ for LHe-4 is found to vary from ≈ 102.d at T = 0 to ∞ at Tλ. |
[66] | C.J. Foot and A.M. Steane, Nature 376 (1995), 213-214. |
[67] | J. Bardeen, L.N. Cooper and J.R. Schrieffer, Phys. Rev. 108 (1957), 1175-1204. |
[68] | R.P. Feynman, Statistical Mechanics, Benjamin (1976). |
[69] | Y.S. Jain, A Study of Elementary Excitations of Liquid Helium-4 Using Macro-Orbital Microscopic Theory, arXiv:Cond-mat/0609418v1 (2006). |
[70] | (a) S. Chutia, A study of Certain Properties of Superfluid Helium-4 Using Macro-Orbital Theory, Ph.D. Dissertation, North-Eastern Hill University, Shillong (India),(2007),(b) Y.S. Jain and S. Chutia (unpublished work). |
[71] | S. Sachdev, Rev. Mod. Phys. 75 (2003), 913-932. |
[72] | (a) M. Rosenblit and J. Jortner, Phys. Rev. Lett. 75 (1995), 4079-4082; (b) M. Farnik, U. Henne, B. Samelin, and J.P. Toennies, Phys. Rev. Lett. 81 (1998), 3892-3895. (b) H. Marris and S. Balibar, Phys. To-day 53 (2000), 29-34. |
[73] | P. Hautojarvi, M.T. Loponen and K. Rytsola, J. Phys. Atom. Mole. Phys. 9 (1976), 411-422. |
[74] | J.P. Toennies and A.F. Vilesov, Ann. Rev. Phys. Chem. 49 (1998), 1-41. |
[75] | (a) S. Flugge, Practicle Quantum Mechanics, Springer-Verlag, (1974). (b) S. Dey and Y.S. Jain, On the wave mechanics of a particle in two different impenetrable spherical cavities, arXiv /quant-ph /1002.4308 |
[76] | (a) S. Grebner, J.P. Toennies and A.F. Vilesov, Science 279 (1998), 2083-2086, (b) A.R.W. Mckellar, Y. Xu and W. Jager, Phys. Rev. Lett. 97 (2006), 183401, (c) K. Nauta and R.E. Miller, J. Chem. Phys. 115 (2001), 10254-10260, (d) A.R.W. Mckellar, J. Chem. Phys. 127 (2007), 044315. |
[77] | P. Kleban, Phys. Lett.A 49 (1974), 19-20. |
[78] | (a) Y.S. Jain, The p=0 condensate is a myth, arXiv:cond-mat/1008.240V2 (2010); the basic foundation and important conclusions of paper-(a) are briefly discussed in[84]. (b) Y.S. Jain, Laws of nature forbid the existence of p=0 condensate in a system of interacting boson (unpublished). |
[79] | Y.S. Jain, Ind. J. Phys. 79 (2005), 1009-14; the factor |sin (k.r/2)| in Eqn.5 for Ψ in this paper should be read as sin |(k.r/2)| and Eg(T)/NkBT in Eqn.25 should be read as Eg(T)/NkB. |
[80] | Y.S. Jain, Ground state of a system of N hard core quantum particles in 1-D box, arXiv:cond-mat/0606409 (2006). |
[81] | Y.S. Jain, Basic foundations of the microscopic theory of super conductivity,arXiv:cond-mat/0603784, (2006). |
[82] | Y.S. Jain, Superfluid Tc of helium-3 and its pressure dependence. arXiv:cond- mat/0611298, (2006). |
[83] | Y.S. Jain, L. Chhangte, S. Chutia and S. Dey, Current Science, 101 (2011), 769-775.[Note: This paper also lists some other experimental observations which support the absence of p = 0 condensate and support CPA-WP of 4He-atoms in He-II]. |
[84] | A. Rybalko, S.P. Rubets, E. Rudavskii, V. Tikhiy, S. Tarapov, R. Golovashchenko and V. Derkach, Phys. Rev. B76 (2007), 140503R. |
[85] | A picture depicted on the cover of Science magazine of December 22, 1995, declaring BEC in TDG as the molecule of the year. |
[86] | A Leggett, International. J. Mod. Phys. B, 15 (2001), 1312-1313. |