[1] | Bar – Sen, Chung – Shi Tseng and Huey – Jian Uaug, 1999, Robustness Design of Nonlinear Dynamic Systems via Fuzzy Linear Control. IEEE Tranctions Fuzzy Systems, vol. 7, No 5, 571 – 585. |
[2] | Chung – Shi Tseng, Bar – Sen and Huey – JianUang, 2001, Fuzzy Tracking Control Design for Nonlinear Dynamic System via T – S Fuzzy Model. IEEE, Transections Sstems, vol. 9, No 3. 381-392. |
[3] | Li – Xin Wang, 2002, Design and Analysis of Fuzzy indentifiers of nonliner Dynamic systems. IEEE Transactions on Automatic control, vol. 40, isue 1, 11 – 23. DOI:10.1109/9.362903. |
[4] | Driss Boutat and Gang Zheng, 2021, Observer Design for Ninlinear Dynamical Systems Different Geometrcal methods. Springer, 485. |
[5] | Alexey Zhirobok, Alexander Zuev, Chung II Kim, 2023, Virtual Sensors Design for Nnlinear Dynamic Systems. Iternational Journal of Robotics and Cgntrol systems 3(2). 134-143. DOI:1031763fijcs.v3i2915. |
[6] | Dvids Katn, 2012, Learning Design for Nonliner Dynamical Movments Systems. The Open Sports Journal, 5(1), 9- 16. |
[7] | Patrick Longhini and Antonio Polacios, 2009, Applications of Nonlinear Dynamics, Springer Science and Business Media, 478. |
[8] | Chow, 2019, Practical tools and guidelines for Exploring and fitting linears and nonlinears dynamical system models. Multivariate behavioral research, vol. 54, Issue 5, 690 – 718. |
[9] | Zhu, S. J., Zheng, Y. F., Fu Yiming, 2004, Analysis of non-linear dynamics of a two-degree-of-freedom vibration system with non-linear damping and non-linear spring. Journal of Sound and Vibration, vol. 271, No. (1-2), 15-24. DOI: 10.1016/S0022- -460X(03)00249-9. |
[10] | Vincent, U. E., Mclinton, P. V. E., Khovan, I. A., Rajasekar, S, 2021, Vibrational and Stochastic resonances in driven nonlinear systems. Mathematical, Physical and Engineering sciences, 12. |
[11] | Saunders, B. E., Vasconcelos, R., Kuether, R. J., Abdelkefi, A., 2023, Nonlinear dynamics, bifurcations, and multi-segmented freeplay nonliniarities. Nonlinear Dynamics, vol. 111, Isue 20. DOI:htt:ps//doi.org//10.007/s 1107-08823-x. |
[12] | Xuechuanan, W., Xiaokui, Y., Honghua, D., Haoyang, F., Satya, N. Atluri, 2022, Computational Methods for Nonlinear Dynamical Systems. Theory and Applications in Aerospace Engineering, 1st Edition, 240. |
[13] | Yang, C. J., 2012, Approximate super – and sub – harmonic response of a multi – DOFs system with local nonlinear under response. Journal of Applied Mathemathics, special Issue 2, 22. |
[14] | Lukasz, Andrzej Pszybyl and Krzystof Cpalka, 2016, A new approach to nonlinear modeling of dynamic system based on fuzzy rules. International Journal of Applied Mathematics and Computer Science, vol. 26, Issue 3, 603 - 621. DOI: https//doi.org/10.1515/amcs-2016-0042. |
[15] | Hyo – Gyu Kim, and Se – Young Oh, 1995, Locally Activated Neural Networks and Stable Neural Controller Design for Nonlinear Dynamic Systems. International Journal of Neural Systems, vol. 06, No1, 91 – 106. |
[16] | Mečislovas Mariūnas, 2024, Investigation of Vibration Damping Peculiarities in a Nonlinear Dynamical System of One Degree of Freedom. American Journal of Computational and applied Mathematics, 14(2), 25 – 33. DOI:10.5923/j.ajcam. 20241402.01. |
[17] | Mečislovas Mariunas, 2023, Investigation of the influence of Exatation force frequency and magnitude on the vibration intrnsity in a nonlinear dynamic system. American Journal of Computational and Applied Mathematics, 13(2), 36-44. |
[18] | Mečislovas Mariunas, 2021, Method for determining a research Model of nonliniear two degre of freedom dynamic system. American Journal of Computational and Applied Mathematics, 14(2), 25-33. DOI: 10.5923/j.ajcam.20211101. |