[1] | Inyama, S.C., Ekeamadi, G.U., Uwagboe, O.M., Omame, A., Mbachu, H.I. and Uwakwe, J.I. (2019) Application of Homotopy Analysis Method for Solving an SEIRS Epidemic Model. Mathematical Modelling and Applications, 4, 36 − 48. |
[2] | Abioyei A.I., Peter O.J., Ayoade A.A., Uwaheren O.A., and Ibrahim .O. (2020) Application of Adomian decomposition method on a mathematical model of malaria. Advances in Mathematics: Scientific Journal, 9, 417 − 435. |
[3] | Muhammad, F., Muhammad, U. S., Aqeel, A. and Ahmad, M.O. (2018) Analysis and numerical solution of SEIR epidemic model of measles with non-integer time fractional derivatives by using Laplace Adomian Decomposition Method. Ain Shams Engineering Journal, 9, 3391 − 3397. |
[4] | Nigar, A., Saeed, A., Sartaj, A.and Gul, Z. (2019) The Adomian Decomposition Method For Solving HIV Infection Model Of Latently Infected Cells. Matrix Science Mathematic (MSMK), 3, 05 − 08. |
[5] | Ali, A.A., Rahmamn, M., Shah, Z. and Kuman, P. (2022) Investigation of a time- fractional COVID-19 mathematical model with singular kernel. Advances in Contin- uous and Discrete Models, 34, 1 − 19. https://doi.org/10.1186/s13662-022-03701-z. |
[6] | Enahoro, I., Oluwaseun, O.S., Ngonghala, C. and Gumel, A.B. (2020) Mathematical Modeling and Analysis of COVID-19 pandamec in Nigeria. MBE, 17, 7192 − 7220. |
[7] | Worldometer. 2022 COVID LIVE-Coronavarius Statistics https://www.worldometers. |
[8] | Kounakep, Y.T., Tchoumi, S.Y., Fotsa, D.J., Kamba, F.G.T., Ngounou, D., Mboula, E., Kamla, V. and Kamgang, J.C. (2021) Modelling the Anti - COVID-19 Individual or Collective Containment Strategies in Cameroon In memoriam of Dimitry Ngounou. Appl. Math. Sci, 15 63 − 78. |
[9] | Worldometer. Coronavirus incubation period. Available from: h |
[10] | Brauer. F., van den Driessche, P. and Wu, J. 2008 Mathematical Epidemiology. Springer-Verlag Berlin Heidelberg. |
[11] | LaSalle, J.P. (1976) The Stability of Dynamical Systems. Regional Conference Series in Applied Mathematics. SIAM, Philadephia. |
[12] | Xu, D.G., Xu, X.Y., Yang, C,H. and Gui, W.H. (2015) Global stability of a vari- ation epidemic spreading model on complex networks. Mathematical Problems in Engineering, 2015, 1 − 8. . |
[13] | Lyapunov, A.M. (1992) The General Problem of the Stability of Motion, Taylor and Francis, London, UK. |
[14] | Adomian, G. (1983) Stochastic Systems, Academic Press, New York. |
[15] | Adomian, G. and Rach, R. (1983) Inversion of Nonlinear Stochastic Operators. J. Math. annal .appl. 91, 39 − 46. |
[16] | Jafar, B. and Hosseini, K. (2016) A modified Adomian decomposition method for singular initial value Emden-Fowler type equations. International Journal of Applied Mathematical Research, 5, 69 − 72. |
[17] | Ministry of Health and Zambia National Public Health Institute (2022). Zambia COVID-19 Statistics Daily Status Update. 10th April. |
[18] | h>ZMB. |
[19] | Mnganga, J.M and Zachariah, N.S. (2020) Mathematical Model of Covid-19 Trans- mission Dynamics and Control Strategies. J Appl Computat Math, 1, 1 − 3. doi: 10.3742/jacm.2020.9.453. |
[20] | Camilla, R., Mirjam, S., Peter, S., Gisela, B., Guenter, F., Claudia, W., Thorbjorn, Z., Verena, T., Christian, J., Wolfgang, G., Michael, S., Christian, D., Patrick, V., Katrin, Z., Sabine, Z., Roman, W. and Michael, H. (2019) Transmission of nCoV infection from an asymptomatic contact in Germany: Case Report. 382, 970 − 971. doi: 10.1056/NEJMc2001468. |
[21] | Matiur, R., Saeed, A., Matoog, R.T., Nawal, A.A. and Tahir, K. (2021) Study on the mathematical modelling of COVID-19 with Caputo-Frabrizio operator. CHAOS, 150 1 − 9. |
[22] | Duah, D., Iddi, S., Adu, B., Aheto, M.J., Kojo, M.S., Fobil, J. and Bosomprah, S. (2021) Mathematical Modelling of COVID-19 infection dynamics in Ghana: Impact evaluation of integrated government and individual level interventions. Infectious Disease Modelling, 6, 381 − 397. |
[23] | Pakwan, R., Sherif, E.S. and Irthit, I. (2021) A mathematical model of COVID- 19 Pandemic: A case study of Bangkok, Thailand. Comput Math Methods Med, 2021, 1 − 11. |
[24] | Chernet, T.D. and Gemechis, F.D. (2020) Modeling and optimal control analysis of transmission dynamics of COVID-19: A case of Ethopia. Alexandria Engineering Journal 60, 719 − 732. |
[25] | Mushanyu, J., Chazuka, Z., Mudzingwa, F. and Ogbogbo, C. (2021) Modelling the impact of detention on COVID-19 transmission dynamics in Ghana. RMS, 8, 1 − 11. |