[1] | Z. Agur, L. Arakelyan, P. Daugulis, Y. Ginosar, Hopf point analysis for angiogenesis models, Discrete Contin. Dyn. Syst. Ser. B. 4, 29—38, 2004. |
[2] | H. Greenspan, On the growth and stability of cell cultures and solid tumors, J. Theor. Biol. 56, 229—242, 1976. |
[3] | Y. Jiao, S. Torquato, Emergent behaviors from a cellular automaton model for invasive tumor growth in heterogeneous microenvironments, PLoS Comput. Biol. 7, e1002314, 2011. |
[4] | A. Monteagudo, J. Santos, A cellular automaton model for tumor growth simulation, Adv. Intell. Soft Comput. 154, 147—155, 2012. |
[5] | S. Zouhri, S. Saadi, M. Rachik, Simulation of Tumor Response to Immunotherapy Using a Hybrid Cellular Automata Model, Int. J. Appl. Comput. Math. 3, 1077—1101, 2017. |
[6] | D. Dréau, S. Dimitre, T. Carmichael, M. Hadzikadic, An Agent-Based Model of Solid Tumor Progression, BICoB. 187—198, 2009. |
[7] | J. Poleszczuk, P. Macklin, H. Enderling, Agent-Based Modeling of Cancer Stem Cell Driven Solid Tumor Growth, Methods Mol Biol. 1516, 335—346, 2016. |
[8] | V. Grimm, S.F. Railsback, Individual-based modeling and ecology, Princeton, NJ: Princeton University Press, 2005. |
[9] | J.H. Miller, S.E. Page, Complex adaptive systems, Princeton, NJ: Princeton University Press, 2007. |
[10] | Bonabeau, E.: Agent-based modeling: methods and techniques for simulating human systems. Proc Natl Acad Sci U S A. 99, 7280—7, 2002. |
[11] | A.P. Feinberg, B. Tycko, The history of cancer epigenetics, Nat Rev Cancer. 4, 143—153, 2004. |
[12] | D. Hanahan, R.A. Weinberg, The hallmarks of cancer, Cell. 100, 57—70, 2000. |
[13] | S.A. Gatz, L. Wiesmuller, P53 in recombination and repair, Cell Death Differ. 13, 1003—1016, 2006. |
[14] | T. Soussi, C. Beroud, Assessing TP53 status in human tumours to evaluate clinical outcome, Nat Rev Cancer.1, 233—240, 2001. |
[15] | J. Momand, D. Jung, S. Wilczynski, J. Niland, The MDM2 gene amplification database, Nucleic Acids Res. 26, 3453—3459, 1998. |
[16] | K.H. Vousden, X. Lu, Live or let die: the cell's response to P53, Nat Rev Cancer. 2, 594—604, 2002. |
[17] | P. May, E. May, Twenty years of P53 research: structural and functional aspects of the P53 protein, Oncogene. 18, 7621—7636, 1999. |
[18] | A.J. Levine, P53, the cellular gatekeeper for growth and division, Cell. 88, 323—331, 1997. |
[19] | J. Momand, G.P. Zambetti, D.C. Olson, D. George, A.J. Levine, The mdm-2 oncogene product forms a complex with the P53 protein and inhibits P53-mediated transactivation, Cell. 69, 1237—1245, 1992. |
[20] | V. Gottifredi, C. Prives, Molecular biology. Getting P53 out of the nucleus, Science. 292, 1851—1852, 2001. |
[21] | H. Hermeking, P53 enters the microRNA world, Cancer Cell. 12, 414—8, 2007. |
[22] | N.A. Barlev, B.S. Sayan, E. Candi, et al. The microRNA and P53 families join forces against cancer, Cell Death Differ. 17, 373—5, 2010. |
[23] | M. Sachdeva, S. Zhu, F. Wu, et al, P53 represses c-Myc through induction of the tumor suppressor MIR-145, Proc Natl Acad Sci USA. 106, 3207—12, 2009. |
[24] | C.J. Chang, C.H. Chao, W. Xia, et al, P53 regulates epithelial-mesenchymal transition and stem cell properties through modulating MIRNAs, Nat Cell Biol. 13, 317—323, 2011. |
[25] | S.A. Mani, W. Guo, M.J. Liao, E.N. Eaton, A. Ayyanan, A.Y. Zhou, et al, The epithelial-mesenchymal transition generates cells with properties of stem cells, Cell. 133, 704—15, 2008. |
[26] | J. Nichols, B. Zevnik, K. Anastassiadis, et al, Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor OCT4, Cell. 95, 379—391, 1998. |
[27] | E. Rosivatz, I. Becker, K. Specht, E. Fricke, B. Luber, R. Busch, H. Hofler, and K.F. Becker, Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and Twist in gastric cancer, Am. J. Pathol. 161, 1881—1891, 2002. |
[28] | S. Elloul, M.B. Elstrand, J.M. Nesland, C.G. Trope, G. Kvalheim, I. Goldberg, R. Reich, and B. Davidson, Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma, Cancer. 103, 1631—1643, 2005. |
[29] | Y. Imamichi, A. Konig, T. Gress, and A. Menke, Collagen type I-induced Smad-interacting protein 1 expression downregulates E-cadherin in pancreatic cancer, Oncogene. 26, 2381—2385, 2007. |
[30] | C. Pena, J.M. Garcia, J. Silva, V. Garcia, R. Rodriguez, I. Alonso, et al, E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: clinicopathological correlations, Hum Mol Genet. 14, 3361—3370, 2005. |
[31] | K. Jain. Abhinav, K. Allton, M. Iacovino, E. Mahen, R.J. Milczarek, T.P. Zwaka, M. Kyba, M.C. Barton, P53 regulates cell cycle and microRNAs to promote differentiation of human embryonic stem cells, PLoS Biol, 2012. |
[32] | G. Wang, X. Guo, W. Hong, Q. Liu, T. Wei, C. Lu, L. Gao, D. Ye, Y. Zhou, J. Chen, J. Wang, M. Wu, H. Liu, J. Kang, Critical regulation of MIR-200/ZEB2 pathway in OCT4/Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent stem cell generation, Proc Natl Acad Sci U S A. 110, 2858—63, 2013. |
[33] | C. Li and J. Wang, Quantifying the Landscape for Development and Cancer from a Core Cancer Stem Cell Circuit, Cancer Res. 75 (2015) 2607--18. |
[34] | H.P. Erickson, Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy, Biol Proced Online. 11, 32—51, 2009. |
[35] | D. Bray, Cell Movements From Molecules to Motility, Garland Science, 2000. |
[36] | H.T. Brandon, M.W. HetzerProtein, Protein homeostasis: live long, won't prosper, Nat Rev Mol Cell Biol. 14, 55—61, 2013. |
[37] | A.J. Giaccia and M.B. Kastan, The complexity of P53 modulation: emerging patterns from divergent signals, Genes and Dev. 12, 2973—2983, 1998. |
[38] | S.C. Wolff, et al, Inheritance of OCT4 predetermines fate choice in human embryonic stem cells, Mol Syst Biol. 14, e8140, 2018. |
[39] | M. P. Gantier, C. E. McCoy, B. R. G. Williams, Analysis of microRNA turnover in mammalian cells following Dicer1 ablation, Nucleic Acids Res. 39, 5692—5703, 2011. |
[40] | M.J. Marzi, et al, Degradation dynamics of microRNAs revealed by a novel pulse-chase approach, Genome Res, 2016. |
[41] | F. Huq, Molecular Modelling Analysis of the Metabolism of Zebularine, Journal of Pharmacology and Toxicology. 1, 317—327, 2006. |
[42] | G. Teoh, M. Urashima, A. Ogata, D. Chauhan, J.A. DeCaprio, S.P. Treon, R.L. Schlossman, K.C. Anderson, MDM2 Protein Overexpression Promotes Proliferation and Survival of Multiple Myeloma Cells, Blood. 90, 1982—92, 1997. |
[43] | Y. Ofran and B. Rost, Analysing six types of protein-protein interfaces, J. Mol. Biol. 325, 377—387, 2003. |
[44] | S.M. Park, A.B. Gaur, E. Lengyel, M.E. Peter, The MIR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2, Genes Dev. 22, 894—907, 2008. |
[45] | P.W. Choi and S.W. Ng, The functions of microRNA-200 family in ovarian cancer: beyond epithelial -mesenchymal transition, International Journal of Molecular Sciences. 18, 1207, 2017. |
[46] | M. Koutsaki, M. Libra, D.A. Spandidos, A. Zaravinos, The MIR-200 family in ovarian cancer, Oncotarget. 8, 66629—66640, 2017. |
[47] | J. Zhang, Q. Sun, Z. Zhang, S. Ge, Z.G. Han, W.T. Chen, Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epi- thelial cancers by impairing the MDM2-P53 feedback loop, Oncogene. 32, 61—69, 2013. |
[48] | S. Brabletz, T. Brabletz, The ZEB/MIR-200 feedback loop--a motor of cellular plasticity in development and cancer, EMBO Rep. 11, 670—677, 2010. |