[1] | Forest, L., Glade, N., and Demongeot, J., 2007, Liénard systems and potential-hamiltonian decomposition Applications in biology, C.R. Biologies, 300(2). |
[2] | Jordan, D. W. and Smith P., Nonlinear ordinary differential equations, Oxford University Press, Oxford, England, 1987. |
[3] | Moreira, N. H., 1992, Liénard-type equations and epidemiology of malaria, Ecological Modelling, 60, 139-150. |
[4] | Sum, X., 2015, Multiple limit cycles of some strongly nonlinear Liénard-Van der Pol oscillator, Applied Mathematics and Computation, 270(C), 620-630. |
[5] | J. Yang and W. Ding, Limit cycles of a class of Liénard systems with restoring forces of seventh degree, 2018, Applied Mathematics and Computation 316(C) 422-437. |
[6] | Y. Wu, L. Guo and Y. Chen, Hopf Bifurcation of Z2-Equivariant Generalized Liénard Systems, 2018, International Journal of Bifurcation and Chaos, 28(6) 1850069-1-1850069-12. |
[7] | S.Chandrasekar, An introduction to the study of stellar structure, Dover Publication, Inc (1967). |
[8] | Chandrasekar, V. K., Senthilvelan, M. and Lakshmanan, M., 2005, A nonlinear oscillator with unusual dynamical properties, National Conference on Nonlinear Systems & Dynamics, Phys. Rev. E, 72(066203). |
[9] | Chandrasekar, V. K., Senthilvelan, M., and Lakshmanan, M., 2007, On the general solution for the modified Emden-type equation J. Phys. A: Math. Theor. 40(4717). |
[10] | Biswas, D., 2019, Analysis of Modified Emden-Type equation : Exact Explicit Analytical Solution, Lagrangian, Hamiltonian for Arbitrary Values of and, Natural Science, 11(1), 8-16. |
[11] | Sarkar, A. and Bhattacharjee, J. K., 2010, Renormalization Group for nonlinear oscillators in the absence of linear restoring force, A letters Journal Exploring the frontiers of Physics 91, 60004, 1-6. |
[12] | Iacono R., and Russo, F., 2019, Class of solvable nonlinear oscillators with isochronous orbits, Physical Review E 83, 027601, 1-4. |
[13] | Sabatini M., 1999, On the periodic function of Liénard Systems, Journal of Differential Equations, 152, 467-487. |
[14] | Pandey, S. N., Bindu, P. S., Senthilvelan, M. and Lakshmanan, M., 2009, A group theoretical identification of integrable equations in the Liénard-type equation. II. Equations having maximal Lie point symmetries, Journal of Mathematical Physics, 50, 120701, 1-25. |
[15] | M. Lakshmanan and K. Murali, Chaos in nonlinear oscillator: Synchronization and control. World Scientific. Singapore, 1996. |
[16] | Ji, J. C., and Leung, A. Y. T., 2002, Bifurcation control of a parametrically excited Duffing system, Nonlinear Dynamics, 27(41), 1-17. |
[17] | Li, H., Preidikman, S., Balachandran, B. and Mote, Jr C. D., 2006, Nonlinear free and forced oscillations of piezoelectric microresonators, J. Micromechanics and Microengineering, 16(3), 56-67. |
[18] | Jeffrey, F. R., Shaw, W. S., Turner, K. L., and Rajashree, B., 2016, Tunable microelectromechanical Filters that exploit parametric resonance, Journal of Vibration and Acoustics, 138(041017), 1-9. |
[19] | Barry, E., Holly, E. B., Moehlis, J. and Turner, L. K., 2007, Chaos for a microelectromechanical oscillator governed by nonlinear Mathieu equation, Journal of Microelectromechanical Systems, 16, 1314-1323. |
[20] | Leuch, A., Papariello, L., Zilberberg, O., Degen, C. L., Chitra, R., and Eichler, A., 2016, Parametric Symmetry Breaking in a Nonlinear Resonator, Physical Review Letters, 117(214101). |
[21] | R. Lifshitz and M. C. Cross, Nonlinear dynamics of Nanomechanical and Micromechanical resonators, New Yor: Wely, 2008. |
[22] | Patidar, V., Sharma, A., and Purohit, G., 2016, Dynamical behavior of paramerically driven Duffing and externally driven Helmholtz-Duffing oscillators under nonlinear dissipation. Nonlinear Dynamics, 83(3), 75-88. |
[23] | Ravindra, B. and Mallik, A. K., 1994, Role of nonlinear dissipation in soft Duffing oscillators, Physical Review, 49(6), 4950-4954. |
[24] | Ravindra, B. and Mallik, A. K., 1995, Chaotic response of a harmonically excited mass on an isolator with non-linear stiffness and damping characteristics, J. Sound Vib, 182(3), 45-53. |
[25] | Miwadinou, C. H., Monwanou, A. V., and Chabi Orou, J. B., 2015, Effect of nonlinear Dissipation on the Basin Boundaries of a Driven Two-well Modified Rayleigh-Duffing Oscillator, International Journal of Bifurcation and Chaos, 25(1550024). |
[26] | Siewe, M. S., Cao, H., and Sanjuan, M. A. F., 2009, Effect of nonlinear dissipation on the basin boundaries of a driven two-well Rayleigh-Duffing oscillator, Chaos Solitons Fractal, 39(10), 92-99. |
[27] | Kigston, S. L., Thamilmaran, K., Pinakin P., Ulrike, F. and Syamal, K. D., 2017, Extreme events in the forced Liénard system, Physical Review E, 96(052204), 1-9. |
[28] | Kaviya, B., Suresh, R., Chandrasekar, V. K., and Balachandran B., 2020, Influence of dissipation on extreme oscillations of a forced anharmonic oscillator, International Journal of Non-Linear Mechanics, 00, 1-15. |
[29] | Suresh, R. and Chandrasekar V. K., 2020, Parametric excitation induced extreme events in MEMS and Liénard oscillator, Chaos, 30(083141), 1-13. |
[30] | A. H. Nayfeh and D. T. Mook, Nonlinear oscillations, Wiley-VCH, New- York, USA, 1979. |
[31] | A. H. Nayfeh, Perturbation Methods, Wiley-VCH, New-York, USA, 2004. |
[32] | Melnikov, V. K., 1963, On the stability of the center for time periodic perturbations, Transactions of the Moscow Mathematical Society, 12(1), 1-57. |
[33] | J. Guckenheimer and P. J. Holmes, Nonlinear oscillations, dynamical systems and bifurcation of vector fields, Springer-Verlag, New York, 1983. |
[34] | Siewe, M., Kakmeni, F. M. M., Tchawoua, C., and Woafo, P., 2005, Bifurcations and chaos in the triple-well Van der Pol oscillator driven by external and parametric excitations, Physica A, 357, 383-396. |
[35] | Chacon R., 1998, Comparaison between parametric excitation and additional forcing terms as chaos-suppressing perturbations, Physics Letters A, 249(1), 431-436. |
[36] | Belhaq M. and Houssni M., 1997, Suppression of chaos in a nonlinear oscillator with parametric and external excitation, Nonlinear Analysis, Theory, Methods\ & Applications, 30(8) 5174-5144. |
[37] | Lima R. and Pettini M., 1990, Suppression of chaos by resonant parametric perturbations, Physica Review A, 41(2), 726-733. |
[38] | Miwadinou, C. H., Monwanou, A. V., Koukpemedji, A. A., Kpomahou, Y. J. F., and Chabi Orou, J. B., 2018, Chaotic Motions in Forced Mixed Rayleigh-Liénard Oscillator with External and Parametric Periodic-Excitations, International Journal of Bifurcation and Chaos, 28(3), 1830005-1-1830005-16. |
[39] | Gradshteyn, I. S. and Ryzhik I. M., 2007, Table of Integrals, Series, and Products, Academic Press, New York. |