[1] | Adegbie, K. S. (2008). A mathematical model of thermal explosion in a combustible gas containing fuel droplets. Ph.D Thesis, LAUTECH, Ogbomoso, Nigeria. |
[2] | Adegbie, K.S. (2013). Thermal explosion in a combustible gas mixture with general Arrhenius reaction rate laws: criticality and its disappearance Afrika Matematika, 24(2), 195-208. |
[3] | Alao, F. I., Adegbie, K. S. & Lawal, M. O. (2011). Effect of thermal radiation on ignition time and critical temperature of a single sodium droplet. International Journal of Mathematics and Mathematical Sciences, 1– 6. |
[4] | Frank-Kamenetskii, D. A. (1969). Diffusion and heat transfer in chemical kinetic:theory of thermal explosion. New York: Plenum Press. |
[5] | Goldfard, I., Sazhin, S. & Zinoviev, A. (2004). Delayed thermal explosion in flammable gas containing fuel droplets: Asymptotic analysis. Journal of Engineering Mathematics, 50, 399-414. |
[6] | Goldfard, I., Gol’dshtein, V., Kuzmenko, G. & Sazhin, S. S. (1999): Thermal radiation Effect on thermal explosion in a gas containing fuel droplets. Combustion Theory Modelling, 3, 769-787. |
[7] | Goldfarb, I., Gol’dshtein V., Katz, D. & Sazhin S. (2007). Radiation effect on thermal explosion in gas containing evaporated fuel droplets. International Journal of Thermal Sciences, 46, 358-370. |
[8] | Kotoyori, T. (2005). Critical temperature for the thermal explosion of chemicals. Idustrial Safety series 7, Amsterdam: Elsevier B.V. |
[9] | Makino, A. (2003). Ignition delay and limit of ignitability of a single sodium droplet: theory and experimental comparisons, Combustion & Flame, 134, 149–152. |
[10] | Makino, A. (2006). Ignition delay and limit of ignitability for sodium pool (theory and experimental comparisons). JSME International Journal, Series B, 19(1), 92–101. |
[11] | Makino, A. & Fukada, H. (2005). Ignition and combustion of a falling, single sodium droplet. Proceedings of the Combustion Institute, 30(2), 2047–2054. |
[12] | Okano, Y. & Yamaguchi, A. (2003). Numerical simulation of a free-falling liquid sodium droplet combustion. Annals of Nuclear Energy, 30, 1863-1878. |
[13] | Okoya, S. S. (2006). Disappearance of criticality in a branched-chain thermal explosion with heat loss. Combustion & Flame, 144, 410–414. |
[14] | Rao, P. M., Raghavan, V.. Velusamy, K., Sundararajan, T. & Shet, U.S.P. (2012). Modeling of quasi-steady sodium droplet combustion in convective environment. International Journal of Heat and Mass Transfer, 56 (4), 734–743. |
[15] | Saravanan, S. M., Rao P. M., Nashine, B. K. & Chellapandi, P. (2012). Numerical investigation of sodium droplet ignition in the atmospheric air. International Journal of Nuclear Energy Science and Technology, 6 (4), 284-297. |
[16] | Sathiah, P. & Roelofs, F. (2014). Numerical modeling of sodium fire—Part I: Spray combustion. Nuclear Engineering and Design, 278, 723–738. |
[17] | Sazhin, S. S. (2006). Advance model of fuel droplet heating and evaporation, Progress in Energy & Combustion Science, 32, 162-214. |
[18] | Sazhin, S. S., Feng, G., Heikal, M. R., Goldfarb I., Gol’dshtein., V. & Kuzmenko, G. (2001). Thermal ignition analysis of a monodisperse spray with radiation. Combustion and Flame, 125, 684-701. |
[19] | Varatharajan, B. & Williams, F.A. (2000). Ignition times in the theory of branched chain thermal explosion. Combustion & Flames, 121, 551–554. |
[20] | Zeldovich, Ya. B., Barenblatt, G. I., Librovich, V.B. & Markhviladze, G. M. (1985). The mathematical theory of combustion and explosions. New York: Consultants Bureau. |