[1] | Biazar, B. Ghanbari, A new third-order family of nonlinear solvers for multiple roots, Comput. Math. Appl. 59 (2010) 3315-3319. |
[2] | C. Chun, B. Neta, A third-order modification of Newton method for multiple roots, Appl. Math. Comput. 211 (2009) 474-479. |
[3] | C. Chun, H. Bae, B. Neta, New families of nonlinear third-order solvers for multiple roots, Comput. Math. Appl. 57 (2009) 1574-1582. |
[4] | C. Dong, A basic theorem of constructing an iterative formula of the higher order of computing multiple roots of an equation, Math. Number. Sinica 11 (1982) 445-450. |
[5] | C. Dong, A family of multipoint iterative functions for finding multiple roots of equation, Int. J. Comput. Math. 21 (1987) 363-367. |
[6] | W. Gautschi, Numerical Analysis: an Introduction, Birkhauser, 1997. |
[7] | B. Ghanbari, B. Rahimi, M. G. Porshokouhi, A new class of third-order methods for multiple zeros, Int. J. Pure Aplll. Sci. Tech. 3 (2011) 65-71. |
[8] | S. Kumar, V. Kanwar, S. Singh, On some modified families of multipoint iterative methods for multiple roots of nonlinear equations, Appl. Math. Comput. 218 (2012) 7382-7394. |
[9] | J. L. Lagouanelle, Sur une mtode de calcul de l’ordre de multiplicity des zros d’un polynme, C. R. Acad. Sci. Paris Sr. A 262 (1966) 626-627. |
[10] | N. A. Mir, K. Bibi, N. Rafiq, Three-step method for finding multiple roots of nonlinear equation, Life Sci. 11 (7) 2014: 387-389. |
[11] | B. Neta, New third order nonlinear solvers for multiple roots, Appl. Math. Comput. 202 (2008) 162-170. |
[12] | N. Osada, An optimal multiple root-finding method of order three, J. Comput. Appl. Math. 51 (1994) 131-133. |
[13] | M. S. Petkovic, B. Neta, L. D. Petkovic, J. Dzunic, Multipoint methods for solving nonlinear equations, Elsevier 2012. |
[14] | E. Schroder, Uber unendich viele Algorithmen zur Auflosung der Gleichungen, Math. Ann. 2 (1870) 317-365. |
[15] | L. Shengguo, L. Xiangke, C. Lizhi, A new fourth-order iterative method for finding multiple roots of nonlinear equations, Appl. Math. Comput. 215 (2009) 1288-1292. |
[16] | F. Soleymani, D. K. R. Baba, Computing multiple zeros using a class of quartically convergent methods, 52 (2013) 531-541. |
[17] | J. R. Sharma, R. Sharma, New third and fourth order nonlinear solvers for computing multiple roots, Appl. Math. Comput. 217 (2011) 9756-9764. |
[18] | R. Thukral, A new third-order iterative method for solving nonlinear equations with multiple roots, J. Math. Comput. 6 (2010) 61-68. |
[19] | R. Thukral, A new fifth-order iterative method for finding multiple roots of nonlinear equations, Amer. J. Comput. Appl. Math. 2 (2012) 260-264. |
[20] | R. Thukral, Introduction to higher order iterative methods for finding multiple roots of solving nonlinear equations, Int. J. Math. Comput. 2013. |
[21] | R. Thukral, A new family of multipoint iterative methods for finding multiple roots of nonlinear equations, Amer. J. Comput. Appl. Math. 3 (2013) 168-173. |
[22] | R. Thukral, A family of three-point methods of eighth-order for finding multiple roots of nonlinear equations, J. Mod. Meth. Numer. Math. 4 (2013) 1-9. |
[23] | R. Thukral, New ninth-order iterative methods for solving nonlinear equations with multiple roots, Amer. J. Comput. Appl. Math. 2014, 4 (3): 77-82. |
[24] | R. Thukral, A family of three-point methods of eighth-order for finding multiple roots of nonlinear equations, J. Mod. Meth. Numer. Math. 5(2) (2014) 9-17. |
[25] | R. Thukral, A new family fourth-order iterative method for solving nonlinear equations with multiple roots, J. Numer. Math. Stoch. 6 (1): 37-44, 2014. |
[26] | R. Thukral, New variants of the Schroder method for finding zeros of nonlinear equations having unknown multiplicity, J. Adv. Math. 8(3) (2014) 1675-1683. |
[27] | J. F. Traub, Iterative Methods for solution of equations, Chelsea publishing company, New York 1977. |
[28] | Z. Wu, X. Li, A fourth-order modification of Newton’s method for multiple roots, IJRRAS 10 (2) (2012) 166-170. |