[1] | Ajie, I. J., Onumanyi P., and Ikhile, M. N. O., (2011) Journal of The Nigerian Mathematical Society, vol. 13, p. 6-9. |
[2] | Akinfenwa, O., Yao N. and Jator, S., (2011) ‘Implicit two step continuous hybrid block methods withfour Off-Steps point for solving stiff ordinary differential equation.’ In Proceedings of the International Conference on Computational and Applied Mathematics, Bangkok, Thailand, p. 425-428. |
[3] | Akinfenwa, O., Yao, N. and Jator, S., (2011) “A Self-Starting Block Adams Mathods for Solving Stiff Ordinary Differential Equation,” in Computational Science and Engineering (CSE), 2011 IEEE 14thInternational Conference, p. 127-136. |
[4] | Amodio, P. (1996) A-stable k-step Linear Multistep Formulae of Order 2k for the Solution of StiffODEs, Report 24/96 Dipartimento di Matematica, Universita' degliStudi di Bari. |
[5] | Bond, I. and Cash, J., (1979) ‘A Block Method for Numerical Integration of Stiff systems of ODEs.’BIT, vol. 19, no. 2, p. 429-447. |
[6] | Brugnano, L. and Magherini, C. (2000), Blended implementation of block implicit methods for ordinary differential equations, Appl. Numer Math. 42, 29-45. |
[7] | Brugnano, L. and Magherini, C. (2007), Blended implicit methods for solving ordinary differential equations and delay algebraic problems and their extention for second order problems, J. Comput. Appl. Math. 205, 777-790. |
[8] | Brugnano, L. and Trigiante, D., (2001) Block Implicit Methods for ODEs in: D. Trigiante (Ed). Recen Tends in Numerical Analysis, New York: Nova Science Publ. Inc.. |
[9] | Brugnano, L. and Trigiante, D. (1998), Solving differential problems bymultistep initial and boundary value methods. Published by Gordon and BeachScience Publishers. |
[10] | Brugnano, L. and Trigiante, D. (1997), Boundary Value Methods for the approximation ordinary differential equations, Lecture notes in comput. Sci. 1196, 78-89. |
[11] | Cash, J. and Diamantakis, M., (1994) “On The Implementation of Block Runge-Kutta Methods for Stiff ivps,” Ann Numer. Math., vol. 1, no. 2, p. 385-398. |
[12] | Charter, P. (1994) ‘L-stableparallelone-blockmethodsfor Ordinary differential equations’ SIAM J. numer.anal.Vol. 31, No. 2, pp. 552-571. |
[13] | Curtiss, C. F. and Hirshfelder, J. O. (1952) Integration of stiff equations, Proc. Nat. Acad. Sci. U.S.A. 38 p. 235-243 |
[14] | Dahlquist, G., (1956) “Convergence and stability in the numerical integration of ordinary differential equations, Math. Scand. 4, p. 33-53. |
[15] | Fatunla, S. O., (1991) “Block Method for Second Order IVPs” J. Compt. Maths, vol. 41, p. 55-63. |
[16] | Fatunla, S.O. (1994), Parallel methods for second order ordinary differential equations. Proceedings of the International Conference on Computational Mathematics, University of Ibadan Press, pp 87-99. |
[17] | Henrici, P., (1962) Discrete Variable Methods ODEs. New York: John Wiley. Journal of The Nigerian Mathematical Society, vol. 12. |
[18] | Muka, K.O. and Ikhile, M.N.O. (2012), Parallel multi-derivative backward differentiation type block II methods for stiff ODEs. 417–434. |
[19] | Onumanyi, P., Awoyemi, D. O., Jator, S. N. and Sirisena, U. W., (1994) ‘‘New Linear Multistep Methods with Continuous Coefficients for First Order IVPs” Journal of The Nigerian Mathematical Society, vol. 13. |
[20] | Onumanyi, P., Sirisena, W.U. and Chollom, J. P., (2001) Continuous hybrid methods through multistep collocation. Abacus, Journal Mathematical Association of Nigeriapp 58-64. |
[21] | Shampine, L. and Watts, H. A., (1972) “A-Stable Block One-Step Methods,” BIT, vol. 23, p. 252-266. |
[22] | Sparrow, C. (982) The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, Springer-Verlag, New York, 1. |
[23] | Zanariah, M. and Suleiman, M., (2007) ‘Implementation of Four-Point Fully Implicit Block Method for Solving Ordinary Differential Equation,’ Applied Maths and Comp., vol 184, p.513-522. |