[1] | W. Malfiet, the tanh method I: Exact solutions of nonlinear evolution and wave equations , American Journal of Physics, Vol. 4, PP. 650-654, 1992.. |
[2] | W. Malfiet, W. Hereman, The tanh method I: Exact solutions of nonlinear evolution and wave equations, Physica Scripta, , Vol. 54 , PP. 563-568, 1996. |
[3] | A. M. Wazwaz, The tanh and the sine-cosine methods for the complex modified KdV and the generalized KdV equations, Applied Mathematics and Computations, Vol. 154, PP. 713-723, 2004. |
[4] | E. Fan, C. H. Zhang, A note on the homogeneous balance method, Physics Letters, Vol. A246, PP. 403-406, 1998. |
[5] | E. Fan, Two new applications of the homogeneous balance method, Physics Letters Vol. A265, PP. 353-357, 2000. |
[6] | M. Senthilvelan, On the extended applications of homogeneous balance method, Applied Mathematics and Computions, Vol. 123, PP. 381-388, 2001. |
[7] | M. L. Wang, Exact solutions of a compound KdV- Burgers equation, Physics Letters Vol. A213, PP. 279-287, 1996. |
[8] | E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A277(2000)212-218. |
[9] | E. Fan, Y. C. Hon, Applications of extended tanh method to “special” types of nonlinear equations, AppliedMathematics and. Computions, Vol. 141, PP. 351-358, 2003. |
[10] | A. M. Wazwaz, the tanh-coth and the sine-cosine methods for kinks, solitons and periodic solutions for the pochhammer- Chree equations, Appl.ied Mathematics and Computations, Vol. 195, PP. 24-33, 2008. |
[11] | A. Ebaid, Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method, Journal of Physics A: Math.ematical Theories, Vol. 34 , PP. 305-317, 2000. |
[12] | J. H. He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Solitons and Fractals, Vol. 30 , PP. 700-708, 2006. |
[13] | J. H. He, M. A. Abdou, New periodic solutions for nonlinear evolution equations using Exp-function method, Chaos solitons and Fractals, Vol. 34, PP. 1421-1429, 2007. |
[14] | X. H. Wu, J. H. H, Exp- function method and its application to nonlinear equations, Chaos Solitons and Fract.als, Vol. 38, PP. 903-910, 2008. |
[15] | S. Zhang, Application of Exp-function method to a KdV equation with variable coefficients, Physics Letters, Vol. A365, PP. 448-453, 2007. |
[16] | E. Fan, J. Zhang, Applications of the Jacobi elliptic function method to special-type nonlinear equations, Phys.ics Letters, Vol. A305, PP. 383-392, 2002. |
[17] | S. Liu, Z. Fu, S. Liu, Q. Zhao, Jacobi elliptic function method and periodic wave solutions of nonlinear wave equations, Physics Letters, Vol. A289 , PP. 69-74, 2001. |
[18] | M. A. Abdou, The extended F-expansion method and its applications for a class of nonlinear evolution equations, Chaos Soliton and Fractals, Vol. 31 , PP. 95-104, 2007. |
[19] | Y. J. Ren, S. T, Liu, H. Q. Zhang, On a generalized improved F-expansion method, Communications in theoretical Physics. Phys. ( Beijing, China), Vol. 45, PP. 15-28, 2006. |
[20] | J. L. Zhang, M. L. Wang, Y. M. Wang, Z. D. Fang, The improved F. expansion method and its applications, Physics Letters, Vol. A350, PP. 103-109, 2006. |
[21] | A. M. Wazwaz, The tanh method for traveling wave solutions of nonlinear equations, Applied Mathematics andComputations, Vol. 133, PP. 213-227, 2002. |
[22] | Djeumen Tchaho Clovis Taki, Jean Roger Bogning and Timoléon Crépin Kofane. Construction of the analytical solitary wave solutions of modified Kuramoto-Sivashinsky’s equation by the method of identification of coefficients of the hyperbolic functions, Far East Journal of Dynamical Systems, Vol. 14(1), PP. 17-34, 2010. |
[23] | Djeumen Tchaho Clovis Taki, Jean Roger Bogning and Timoléon Crépin Kofane. Multi-Soliton solutions of the modified Kuramoto- Sivashinsky’s equation by the BDK method, Far East Journal of Dynamical Systems, Vol. 15(1), PP. 83-98. |
[24] | J. R. Bogning, C. T. Djeumen Tchaho , T. C. Kofané, Construction of the soliton solutions of the Ginzburg-Landau equations by the new Bogning-Djeumen Tchaho-Kofané method, Physica Scripta, Vol. 85, PP. 025013-025018, 2012. |
[25] | Jean Roger Bogning, Clovis T Djeumen Tchaho, Timoléon C Kofane, Generalization of the Bogning- DjeumenTchaho-Kofane method for the construction of the solitary waves and the survey of the instabilities, Far East Journal of Dynamical Systems, Vol. 20(2), PP. 101-119, 2012.. |
[26] | Clovis Taki Djeumen Tchaho, J. R. Bogning and T. C. Kofané, Modulated Soliton Solution of the Modified Kuramoto Sivashinsky's Equation, American Journal of Computational and Applied Mathematics, Vol.. 2(5), PP. 218-224. |
[27] | N. Sasa and J. Satsuma. New type of soliton solutions for a higher-order nonlinear Schrödinger equation, Journal of the Physical Society of Japan, Vol. 60, PP. 408-417, 1991. |
[28] | S. Ghosh, A. Kundu and S. Nandy. Solitons solutions Liouville integrability and gauge equivalence of Sasa-Satsuma equation, Journal of. Mathematical Physics, Vol. 40, PP. 1993-2000, 1999. |