[1] | O.M. Alifanov, Inverse Heat Transfer Problems , Springer-Verlag, 1994. |
[2] | J. Bear, Dynamics of Fluids in Porous Media, Elsevier, New York, 1972. |
[3] | V. Beck, B. Blackwell, St. C.R. Clair, Inverse Heat Conduction, Ill-Posed Problems, Wiley-Interscience, New York, 1985. |
[4] | A.M.Bruaset, A Survey of Preconditioned Iterative Methods, New York:Addison-Wesley,1995. |
[5] | M. Choulli, M. Yamamoto Generic well-posedness of an inverse parabolic problem - the Hölder-space approach, Inverse Problems, 12 (1996), 195-205 |
[6] | M. Chulli, An inverse problem for a semilinear parabolic equation, Inverse Problems, 10(1994) 1123-1132. |
[7] | J.V. Daniel , The Approximate Minimization of Functionals , Prentice-Hall, Englewood Cliffs, 1971. |
[8] | P. DuChateau, Monotonicity and invertibility of coefficient-to-data mappings for parabolic inverse problems, SIAM J. Math. Anal. 26(6)(1995) 1473-1487. |
[9] | P. DuChateau, Introduction to inverse problems in partial differential Equations for engineers, physicists and mathematicians, In: Parameter Identification and Inverse Problems in Hydrology, Geology and Ecology (J. Gottlieb, P. DuChateau, eds), Kliver Academic Publishers, The Netherland (1996) 3-38. |
[10] | P. DuChateau, R. Thelwell, G. Butters, Analysis of an adjoint problem approach to the identification of an unknown diffusion coefficient, Inverse Problems 20(2004) 601-625. |
[11] | R. Fletcher, C.M. Reeves, Function Minimization by Conjugate Gradients, Computer J., 7(1964), 149-154. |
[12] | O. F. Gozukizil ,M. Yaman, A Note On The Unique Solvability Of AnInverse Problem With Integral Overdetermination, Applied Mathematics E-Notes,8(2008), 223-230. |
[13] | A. Hasanov, A. Demir, A. Erdem, Monotonicity of input-output mappings ininverse coefficient and source problems for paraboic equations, J.Math.Anal.Appl., 335(2007),pp.1434-1451 |
[14] | A. Hasanov, P. DuChateau, B. Pektas, An adjoint problem approach and coarse-fine mesh method for identification of the diffusion coefficient in a linear parabolic equation, Inverse and Ill-Posed Problems 14(2006) 435-463. |
[15] | A. Hasanov, J. Mueller, A numerical method for backward parabolic problems with non-self adjoint elliptic operators, Appl. Numer. Math., 37(2001), 55-78. |
[16] | A. Hasanov, Simultaneous determination of source terms in a linear parabolic problem from the final overdetermination: Weak solution approach, Journal of Mathematical Analysis and Applications, 330(2), 766-779. |
[17] | A.Hasanov, An inverse source problem with single Dirichlet type measured output data for a linear parabolic equation, Appl. Math. Lett. 24(7): 1269-1273 (2011). |
[18] | V. Isakov, Inverse parabolic problems with the final overdetermination, Comm. Pure Appl. Math., 44(1991), 185-209. |
[19] | V. Isakov, Inverse Source Problems, Mathematical Surveys and Monographs, 34, American Mathematical Society, Providence, RI, 1990. |
[20] | V. L. Kamynin, On the inverse problem of determining the right-hand side of a parabolic equation under an integral overdetermination condition, Math. Notes, 77-4(2005), 482-493. |
[21] | S.Narayan,M.B.Dusseault and D.C.Nobes. Inversion techniques applied to resistivity inverse problems, Inverse Problems, 10(1994)669-686 |
[22] | E. Polak, Optimization: Algorithms and Consistent Approximations, Springer-Verlag, New York, 1997. |
[23] | A. I. Prilepko, A. B. Kostin, On some inverse problems for parabolic equations with final and integral overdetermination, Math. Sb. ,183(4)(1992) |
[24] | A.I. Prilepko, D.G. Orlovskii and I.A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York, (2000). |
[25] | A.I. Prilepko, V.V. Solov’ev, I.A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Dekker, New York, 2000. |
[26] | M. Renardy, W.J. Hursa, J.A. Nohel, Mathematical Problems in Viscoelasticity, Wiley, New York, 1987. |
[27] | A.Tikhonov and, V.Arsenin, Solution of Ill-Posed Problems, New York:JohnWiley, 1977. |
[28] | D. S. Tkachenko, On an Inverse Problem for a Parabolic Equation, Mat. Zametki, 75:5 (2004), 729-743. |
[29] | F.P.Vasil’ev, Methods for Solving Extremal Problems, Moscow:Nauka, 1981. |
[30] | J. Wang, A.J.S. Neto, F.D.M. Neto, J.Su , Function estimation with Alifanov’s iterative regularization method in linear and nonlinear heat conduction problems, Applied Mathematical Modelling 26(2002), 1093-1111. |
[31] | C. Zheng, G.D. Bennett, Applied Contaminant Transport Modelling: Theory and Practice, Van Nostrand Reinhold, New York, 1995. |