[1] | Alejandro Rojas-Palma, Eduardo González-Olivares, “Optimal harvesting in a predator–prey model with Allee effect and sigmoid functional response” , Applied Mathematical Modelling, 36, 1864–1874, 2012. |
[2] | Mainul Haque, “Existence of complex patterns in the Beddington–DeAngelis predator–prey model”, Mathematical Biosciences, 239, 179–190, 2012. |
[3] | A. Braza Peter, “Predator–prey dynamics with square root functional responses”, Nonlinear Analysis: Real World Applications 1,3,1837–1843, 2012. |
[4] | I. A. E. Atkinson, “Introduced animals and extinctions.. In:Western, D., Pearl, M.C. (Eds.), Conservation for the Twenty-first Century”, Oxford University Press, New York, pp. 54–75, 1989. |
[5] | J. Diamond, “Overview of recent extinctions, In : Western, D., Pearl, M.C. (Eds.), conservation for the twenty-first century”, Oxford university press, New York, 37-41, 1989. |
[6] | P. J. Moors, I. A. E. Atkinson, “Predation on seabirds by introduced animals, and factors affecting its severity. In : Croxall, J.P., Evans, P.G.H., Schreiber, R.W. (Eds.), Status and Conservation of theWorld’s Seabirds”, ICBP Technical Publication, No. 2, Cambridge, pp. 667–690, 1984. |
[7] | I. A. E. Atkinson, “Opportunities for ecological restoration”, New Zealand Journal of Ecology, 11, 1–12, 1988. |
[8] | Jimin Zhang, Meng Fan, Yang Kuang, “Rabbits killing birds revisited”, Mathematical Biosciences 203, 100–123, 2006. |
[9] | Meng Fan, Yang Kuang, Zhilan Feng, “Cats protecting birds revisited”, Bulletin of mathematical biology, 67, 1081-1106, 2005. |
[10] | Zhenbu Zhang, “Qualitative Analysis for a Prey-Mesopredator-Superpredator Model”, Applied Mathematical Sciences, Vol. 2, no. 42, 2063 – 2080, 2008. |
[11] | Raid Kamel Naji, Ranjit Kumar Upadhyay, Vikas Rai, “Dynamical consequences of predator interference in a tri-trophic model food chain”, Nonlinear Analysis: Real World Applications, 11, 809-818, 2010. |
[12] | Xitao Wang , Min Zhao, “Chaos in a Hybrid Three-Species Food Chain with Beddington-Deangelis Functional Response”, Procedia Environmental Sciences, 10, 128-134, 2011. |
[13] | Rimpi Pal, Debanjana Basu, M. Banerjee, “Modelling of phytoplankton allelopathy with Monod-Haldane-type functional response- A Mathematical Study”, Biosystem, 95, 243-253, 2009. |
[14] | W. M. Liu, “Criterion of Hopf-bifurcation without using eigenvalues”, J.Math. Anal. Appl., 182, 250-256, 1994. |
[15] | Swati khare, O. P. Misra, Chhatrapal Singh, Joydip Dhar, “Role of delay on planktonic ecosystem in the presence of a toxic producing phutoplankton”, International journal of differential equation, 1-16, 2011. |
[16] | J. K. Hale, “Ordinary Differential Equation”, 2nd Ed, Kriegor, Basel,1980. |
[17] | G. Birkhoff, G. C. Rota, “Ordinary Differential Equation”, Ginn. and Co, 1982. |
[18] | B. Dubey, R. K. Upadhyay, “Persistence and Extinction of One-Prey and Two-Predators system”, Nonlinear analysis: Modelling and Control, 9, 307-329, 2004. |