[1] | D. Anderson, “Toxic algal blooms and red tides: a global perspective In: Red Tides: Biology”, Environ. Sci. Technol. New York 11-16, 1989. |
[2] | G. Hallegraeff, “ A review of harmful algae blooms and the apparent global increase”, Phycologia, 32, 79-99, 1993. |
[3] | T. Smayda, Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. Toxic marine phytoplankton. New York, Elsevier,1990. |
[4] | J. Blaxter, A. Southward, Advances in marine biology, Academic Press, London 1997. |
[5] | D. Huang, H. Wang, J. Feng, Z. Zhu, “ Hopf bifurcation of the stochastic model on HAB nonlinear stochastic dynamics”, Chaos, Solitons and Fractals 27 (4), 1072-1079, 2006. |
[6] | R.R. Sarkar, B. Mukhopadhyay, R. Bhattacharyya, S. Banerjee, “Time lags can control algal bloom in two harmful phytoplankton-zooplankton system”, Appl. Math. and Comput. 186 (1), 445-459, 2007. |
[7] | J. Zhao, J. Wei, “Stability and bifurcation in a two harmful phytoplankton- zooplankton system”, Chaos, Solitons and Fractals 39 (3), 1395-1409, 2009. |
[8] | Z. Li, F. Chen, “Extinction in periodic competitive stage-structured Lotka-Volterra model with the effects of toxic substances”, J. Comput. Appl. Math. 231 (1), 143-153, 2009 . |
[9] | Z. Liu, L. Chen, “ Positive periodic solution of a general discrete non-autonomous difference system of plankton allelopathy with delays”, J. Comput. Appl. Math. 197 (2), 446-456, 2006. |
[10] | J. Chattopadhyay, R.R. Sarkar, S. Mandal, “ Toxin-producing plankton may act as a biological control for planktonic blooms-field study and mathematical modeling”, . J. Theor. Biol. 215, 333-44, 2002. |
[11] | S. Khare, O.P. Misra, J. Dhar, “ Role of toxin producing phytoplankton on a plankton ecosystem”, Nonlinear Analysis: Hybrid Systems 4 (3), 496-502, 2010. |
[12] | K. Keating, “Algal metabolite influence on bloom sequence in eutrophic freshwater ponds”, Ecological Monograph Series, EPA. 600/3-76-081, Govt. Print. OH, Washington, DC, 148-152, 1976. |
[13] | [K. Kirk, J. Gilbert, “ Variation in herbivore response to chemical defenses: zooplankton foraging on toxic cyanobacteria”, Ecology 73, 2208-2217, 1992. |
[14] | E. Odum, Fundamentals of Ecology, W.B.Saunders Company, Philadelphia, 1971. |
[15] | A. Boney, Phytoplankton, Edward Arnold Ltd.,London, 1976. |
[16] | R.R. Sarkar, H. Malchow, “Nutrients and toxin producing phytoplankton control algal blooms a spatiotemporal study in a noisy environment”, Journal of Biosciences 30 (5) 749-760, 2005. |
[17] | J. Chattopadhyay, R.R. Sarkar, A. E. Abdllaoui,” A delay differential Equation model on harmful algal blooms in the presence of toxic substances”, Math. Med. Biol. 19 (2) 137-61, 2002. |
[18] | R.R. Sarkar, S. Pal, J. Chattopadhyay, “ Role of two toxin-producing plankton and their effect on phytoplankton-zooplankton system-a mathematical study supported by experimental findings”, Biosystems 80 (1) 11-23, 2005. |
[19] | R.R. Sarkar, J. Chattopadhayay, “Occurrence of planktonic blooms under environ- mental fluctuations and its possible control mechanism-mathematical models and experimental observations”, J. Theor. Biol. 224 (4), 501-516 2003. |
[20] | R.R. Sarkar, S. Petrovskii, M. Biswas, A. Gupta, J. Chattopadhyay,” An ecological study of a marine plankton community based on the field data collected from Bay of Bengal”, Ecol. Model. 193 589-601, 2006. |
[21] | M. Kot, Elements of Mathematical Biology, Cambridge University Press, Cambridge, 2001. |
[22] | R. May, Stability and complexity in model ecosystems, Princeton University Press, 2001. |
[23] | P.Wangersky, W. Cunningham, “Time lag in prey-predator population models”, Ecology 38 (1) 136-139, 1957. |
[24] | J. Murray, Mathematical biology: an introduction, Springer, 2002. |
[25] | B. Hassard, N. Kazarinoff, Y.Wan, Theory and applications of Hopf bifurcation, CUP Archive, 1981. |
[26] | J. Marsden, M. McCracken, The Hopf bifurcation and its applications, Springer-Verlag, 1976. |