[1] | S. D. Conte, Carl de Boor, Elementary Numerical Analysis, An Algorithmic Approach, McGraw-Hill, 1981 |
[2] | A. Cordero, J. L. Hueso, E. Martinez, J. R. Torregrosa, Steffensen type methods for solving nonlinear equations, Comput. Appl. Math. (2010) doi:10.1016/jcam2010.08.043. |
[3] | M. Dehghan, M. Hajarian, Some derivative free quadratic and cubic convergence iterative formulas for solving nonlinear equations, J. Comput. Appl. Math. 29 (2010) 19-30. |
[4] | W. Gautschi, Numerical Analysis: an Introduction, Birkhauser, 1997. |
[5] | Y. H. Geum, Y. I. Kim, A family of optimal sixteenth-order multipoint methods with a linear fraction plus a trivariate polynomial as the fourth-step weighting function, Comp. Math, Appl. 61 (2011) 3278-3287. |
[6] | Y. H. Geum, Y. I. Kim, A biparamtric family of optimally convergent sixteenth-order multipoint methods with their fourth-step weighting function as a sum of a rational and a generic two-variable function, Comput. Appl. Math. 235 (2011) 3178-3188. |
[7] | S. K. Khattri, R. P. Agarwal, Derivative-free optimal iterative methods, Comput. Met. Appl. Math. 10 (2010) 368-375. |
[8] | S. K. Khattri, I. K. Argyros, Sixth order derivative free family of iterative methods, Appl. Math. Comput. (2011), doi:10.1016/jamc 2010.12.021. |
[9] | H. Kung, J. F. Traub, Optimal order of one-point and multipoint iteration, J. Assoc. Comput. Math. 21 (1974) 643-651. |
[10] | Z. Liu, Q. Zheng, P. Zho, A variant of Steffensen’s method of fourth-order convergence and its applications, Appl. Math. Comput. 216 (2010) 1978-1983. |
[11] | Y. Peng, H. Feng, Q. Li, X. Zhang, A fourth-order derivative-free algorithm for nonlinear equations, J. Comput. Appl. Math. 235 (2011) 2551-2559. |
[12] | M. S. Petkovic, S Ilic, J. Dzunic, Derivative free two-point methods with and without memory for solving nonlinear equations, Appl.2 Math. Comput. 217 (2010) 1887-1895. |
[13] | F. Soleymani, S. K. Vanani, Optimal Steffensen-type methods with eighth order convergence, Comp. Math. Appl. 62 (2012) 4619-4626. |
[14] | F. Soleymani, S. K. Vanani, M. J. Paghaleh, A class of three-step derivative-free root solvers with optimal convergence order, ISRN Appl. Math. In press (2012). |
[15] | J. F. Steffensen, Remark on iteration, Skand. Aktuar Tidsr. 16 (1933) 64-72. |
[16] | R. Thukral, Eighth-order iterative methods without derivatives for solving nonlinear equations, J. Appl. Math. (2011) 1-11. |
[17] | R. Thukral, New family of higher order Steffensen-type methods for solving nonlinear equations, J. Mod. Meth. Numer. Math. 3 (2012) 1-10. |
[18] | J. F. Traub, Iterative Methods for solution of equations, Chelsea publishing company, New York 1977. |
[19] | S. Weerakoon, T. G. I. Fernando, A variant of Newton’s method with accelerated third-order convergence, Appl. Math. Lett. 13 (2000) 87-93. |
[20] | Q. Zheng, J. Li, F. Huang, An optimal Steffensen-type family for solving nonlinear equations, Appl. Math. Comput. 217 (2011) 9592-9597 |