[1] | N. A. Perestyuk, V. A. Plotnikov, A. M. Samoilenko and N. V. Skripnik, Differential equations with impulse effects: multivalued right-hand sides with discontinuities. De Gruyter Studies in Mathematics. Berlin/Boston: Walter De Gruyter GmbH&Co., 2011, vol. 40 |
[2] | A. V. Plotnikov and N. V. Skripnik, Differential equations with ''clear'' and fuzzy multivalued right-hand sides. Asymptotics Methods. AstroPrint, Odessa, 2009 |
[3] | V. A. Plotnikov, A. V. Plotnikov and A. N. Vityuk, Differential equations with a multivalued right-hand side: Asymptotic methods. AstroPrint, Odessa, 1999 |
[4] | L. Ambrosio and L. Tilli, Topics on analysis in metric spaces. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2004, vol. 25 |
[5] | V. Lakshmikantham, T. Granna Bhaskar and J. Vasundhara Devi, Theory of set differential equations in metric spaces. Cambridge Scientific Publishers. 2006 |
[6] | V. Lakshmikantham and R. N. Mohapatra, Theory of Fuzzy Differential Equations and Inclusions. London, Taylor & Francis, 2003 |
[7] | Plotnikov, A.V. and Skripnik, N.V., 2011, Set-valued differential equations with generalized derivative., J. Advanced Research in Pure Mathematics, 13(1), 144-160 |
[8] | de Blasi, F. S. and Iervolino, F., 1969, Equazioni differentiali con soluzioni a valore compatto convesso., Boll. Unione Mat. Ital., 2(4-5), 491-501 |
[9] | Bede, B. and Stefanini, L., 2008, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations., Univ. Urbino ''Carlo Bo'', Working Paper Series in Economics, Math. and Statistics. WP-EMS#2008/03 |
[10] | de Blasi, F. S. and Iervolino, F., 1971, Euler method for differential equations with set-valued solutions., Boll. Unione Mat. Ital., 4(4), 941-949 |
[11] | Brandao Lopes Pinto, A. J., de Blasi, F. S. and Iervolino, F., 1970, Uniqueness and existence theorems for differential equations with compact convex valued solutions., Boll. Unione Mat. Ital., (4), 534-538 |
[12] | Dabrowska, R.. and Janiak, T., 1993, Stability of functional- differential equations with compact convex valued solutions., Discuss. Math., (13), 87-92 |
[13] | Drici, Z., Mcrae, F. A. and Vasundhara Devi, J., 2005, Set differential equations with causal operators., Mathematical Problems in Engineering, 2005:2, 185–194 |
[14] | Galanis, G. N., Gnana Bhaskar, T., Lakshmikantham, V., and Palamides, P. K., 2005, Set value functions in Frechet spaces: Continuity, Hukuhara differentiability and applications to set differential equations., J. Nonlinear Analysis, 61, 559-575 |
[15] | Galanis, G. N., Tenali, G. B. and Lakshmikantham, V., 2008, Set differential equations in Frechet spaces., J. Appl. Anal., 14, 103-113 |
[16] | Gnana Bhaskar, T. and Lakshmikantham, V., 2003, Set differential equations and flow invariance., Appl. Anal. (82), 357-368 |
[17] | Gnana Bhaskar, T. and Lakshmikantham, V., 2004, Lyapunov stability for set differential equations., Dynam. Systems Appl., (13), 1-10 |
[18] | Gnana Blaskar, T. and Vasundhara Devi, J., 2005, Set differential systems and vector Lyapunov functions., Appl. Math. Comput., 165(3), 539-548 |
[19] | Kisielewicz, M., 1975, Description of a class of differential equations with set-valued solutions., Lincei-Rend. Sc. fis. mat. e nat., 58, 158-162 |
[20] | Kisielewicz, M., Serafin, B. and Sosulski, W., 1975, Existence theorem for functional-differential equation with compact convex valued solutions., Demonstratio math., 13(2), 229-237 |
[21] | Komleva, T. A., Plotnikov, A. V. and Skripnik, N. V., 2008, Differential equations with set-valued solutions., Ukr. Math. J., 60(10), 1540-1556 |
[22] | Lakshmikantham, V., 2004, The connection between set and fuzzy differential equations., Facta Univ. Ser. Mech. Automat. Control. Robot., 4, 1-10 |
[23] | Lakshmikantham, V., 2005, Set differential equations versus fuzzy differential equations., J. Applied Mathematics and Computation, 164, 277-294 |
[24] | Laksmikantham, V., Leela, S. and Vatsala, A. S., 2002, Setvalued hybrid differential equations and stability in terms of two measures., J. Hybrid Systems, (2), 169-187 |
[25] | Laksmikantham, V., Leela, S. and Vatsala, A. S., 2003, Interconnection between set and fuzzy differential equations., Nonlinear Anal., 54, 351-360 |
[26] | Lakshmikantham, V. and Tolstonogov, A. A., 2003, Existence and interrelation between set and fuzzy differential equations., Nonlinear Anal., 55, 255-268 |
[27] | Piszczek, M., 2006, Second Hukuhara derivative and cosine family of linear set-valued functions., An. Acad. Paedagogicae Cracoviensis. Studia Math., 33, 87-98 |
[28] | Piszczek, M., 2008, On a multivalued second order differential problem with Hukuhara derivative., Opuscula Math., 28(2), 151-161 |
[29] | Plotnikov, A. V., 2000, Differentiation of multivalued mappings. T-derivative., Ukr. Math. J., 52(8), 1282-1291 |
[30] | Plotnikov, A. V. and Tumbrukaki, A. V., 2000, Integro-differential equations with multivalued solutions., Ukr. Math. J., 52(3), 413-423 |
[31] | Plotnikova, N. V., 2006, Approximation of a set of solutions of linear differential inclusions., Nonlinear Oscil., 9(3), 375-390 |
[32] | Skripnik, N. V., 2008, The Krasnoselskii-Krein theorem for differential equations with multivalued solutions., Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh., 826(58), 87-99 |
[33] | Smajdor, A., 2003, On a multivalued differential problem., Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13, 1877-1882 |
[34] | Tise, I., 2007, Data dependence of the solutions for set differential equations., Carpathian J. Math., 23(1-2), 192-195 |
[35] | A. Tolstonogov, Differential inclusions in a Banach space, Dordrecht, Kluwer Academic Publishers, 2000 |
[36] | Vityuk, A. N., 2003, Differential equations of fractional order with set-valued solutions., Visn. Odes. Derzh. Univ., Ser. Fiz.-Mat. Nauky., 8(2), 108-112 |
[37] | Ahmad, B. and Sivasundaram, S., 2008, -stability of impulsive hybrid setvalued differential equations with delay by perturbing lyapunov functions., Communications in Applied Analysis, 12(2), 137-146 |
[38] | Arsirii, A. V. and Plotnikov, A. V., 2009, Systems of control over set-valued trajectories with terminal quality criterion., Ukr. Math. J., 61(8), 1349-1356 |
[39] | N. D. Phu and T. T. Tung, Multivalued Differential Equations, VNU - HCM City: Publishing House, 2005 |
[40] | Phu, N. D. and Tung, T. T., 2007, Existence of solutions of set control differential equations., J. Sci. Tech. Devel., 10(6), 5-14 |
[41] | A. V. Plotnikov, “Differential inclusions with Hukuhara derivative and some control problems,” Rep. VINITI 26.04.82, 2036-82, 1982 |
[42] | Janiak, T. and Łuczak-Kumorek, E., 2003, Method on partial averaging for functional-differential equations with Hukuhara's derivative. Studia Univ. ''Babeş-Bolyai'', Math., XLVIII(2), 65-72 |
[43] | Kichmarenko, O. D., 2009, Averaging of differential equations with Hukuhara derivative with maxima., Int. J. Pure Appl. Math., 57(3), 447-457 |
[44] | Kisielewicz, M., 1976, Method of Averaging for Differential Equations with Compact Convex Valued Solutions., Rend. Math., 9(3), 397-408 |
[45] | Plotnikov, V. A. and Kichmarenko, O. D., 2006, Averaging of controlled equations with the Hukuhara derivative., Nonlinear Oscil., 9(3), 365-374 |
[46] | Plotnikov, V. A. and Rashkov, P. I., Averaging in differential equations with Hukuhara derivative and delay., Funct. Differ. Equ., (8), 371-381 |
[47] | Radstrom, H, 1952, An embeldding theorem for spaces of convex sets., Proc. Amer. Math. Soc., (3), 165-169 |
[48] | Hukuhara, M., 1967, Integration des applications mesurables dont la valeur est un compact convexe., Funkcial. Ekvac., (10), 205-223 |
[49] | Plotnikov, A.V., Komleva, T.A. and Arsiry, A.V., 2009, Necessary and sufficient optimality conditions for a control fuzzy linear problem, Int. J. Industrial Mathematics, 1(3), 197-207 |