[1] | Priya, S.P., Chowdary, V.A. and Dinesh, V.S. (2013). Wireless sensor networks to monitor Glucose level in blood. International Journal of Advancements in Research & Technology, 2(4): 322–326. |
[2] | Chaudhary, D. and Waghmare, L.M. (2014). Design Challenges of Wireless Sensor Networks and Impact on Healthcare Applications. International Journal of Latest Research in Science and Technology, 3(2): 110–114. |
[3] | Abidi, B., Jilbab, A., and Haziti, M.E.L. (2016). Wireless Sensor Networks in biomedical: wireless body area networks. In: Procedings of the Europe, Middle East and North Africa Conference on Technology and Security to support Learning. EMENA-TSSL, SaidaOujda, Morocco, 3–5. |
[4] | Wu, F., Xu, L., and Kumari, S. (2017). An Improved and Anonymous two factor authentication protocol for healthcare applications with wireless medical sensor networks. MultimedSyst, 23 (2), 195–205. |
[5] | Kim D H, Lu N, Ma R, Kim Y S, Kim R H, Wang S, Wu J, Won S M, Tao H, Islam A, Yu K J, Kim T I, Chowdhury R, Ying M, Xu L, Li M, Chung H J, Keum H, McCormick M, Liu P, Zhang Y W, Omenetto F G, Huang Y, Coleman T, Rogers J A. (2011). Epidermal electronics. Science, 333(6044): 838–843. DOI:10.1126/science.1206157. |
[6] | Gao W, Emaminejad S, Nyein H Y Y, Challa S, Chen K, Peck A, Fahad H M, Ota H, Shiraki H, Kiriya D, Lien D H, Brooks G A, Davis R W, Javey A. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529(7587): 509–514. DOI:10.1038/nature16521. |
[7] | Wang X W, Gu Y, Xiong Z P, Cui Z, Zhang T. (2014). Electronic skin: silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Advanced Materials, 26(9): 1309. DOI:10.1002/adma.201470054. |
[8] | Sheridan C. (2014). Apple moves on health, drug developers shift into smart gear. Nature Biotechnology, 32(10): 965–966. DOI:10.1038/nbt1014-965a. |
[9] | Zang Y P, Zhang F J, Di C A and Zhu D B. (2015). Advances of flexible pressure sensors toward artificial intelligence and health care applications. Materials Horizons, 2(2): 140–156. DOI:10.1039/c4mh00147h. |
[10] | Zhao W X, Bhushan A, Santamaria A, Simon M and Davis C. (2008). Machine learning: A crucial tool for sensor design. Algorithms, 1(2): 130–152. DOI:10.3390/a1020130. |
[11] | Vu C. and Kim J. (2018). Human motion recognition by textile sensors based on machine learning algorithms. Sensors, 18(9): 3109. DOI:10.3390/s18093109. |
[12] | Pouschter, J. and Stewart, R. (2016). Smartphone ownership and Internet usage continues to climb in emerging economies but advanced economies still have higher rates of technology use. Pew Research Center. url: http://suo.im/5QO3cZ, (accessed 2020, June 19). |
[13] | WHO. (2020). Corona disease (COVID-19). Situation Report -151 (June19, 2020). World Health Organization, 1-17. url: www.who.org (Accessed time: June 20, 2020 at 10:00 am national time). |
[14] | Labrique, A.B., Vasudevan, L., Kochi, E., Fabricant, R and Mehl, G. (2013). MHealth innovations as health system strengthening tools: 12 common applications and a visual framework. Global Health: Sci Pract, 1(2): 160–71. doi:10.9745/ghsp-d-13-00031. |
[15] | Kothari, C.R. (Ed.). (2004). Research Methodology: Methods and Techniques (2nd ed.), New Age International Publishers, 95–111. |
[16] | Sha, H., Zeng, H., Zhao, J., & Jin, H. (2019). Mangiferin ameliorates gestational diabetes mellitus-induced placental oxidative stress, inflammation and endoplasmic reticulum stress and improves fetal outcomes in mice. European Journal of Pharmacology, 859: 172522. DOI:10.1016/j.ejphar.2019.172522. |
[17] | Kays, R., Tilak, S., Crofoot, M., Fountain, T., Obando, D., Ortega, A., Kuemmeth, F., Mandel, J., Swenson, G., Lambert, T., Hirsch, B. & Wikelski, M. (2011). Tracking Animal Location and Activity with an Automated Radio Telemetry System in a Tropical Rainforest. Published by Oxford University Press on behalf of the British Computer Society. The Computer Journal, 1(1): 1–18, doi: 10.1093/comjnl/bxr072. |
[18] | Waltham. (2017). Feline Body Mass Index (FBMI). Waltham FBMI Calculator. 1–2. url: https://jscalc.z6_io/calc/hORP8x2bWjQU7qxq. |
[19] | Mitchell, M., Hedt-Gauthier, B.L., Msellemu, D., Nkaka, M. and Lesh, N. (2013). Using electronic technology to improve clinical care – results from a before-after cluster trial to evaluate assessment and classification of sick children according to Integrated Management of Childhood Illness (IMCI) protocol in Tanzania. BMC Med Inform Decis Mak, 13(1): 95. doi:10.1186/1472-6947-13-9. |
[20] | Zuniga, A.E., Win, K.T., Susilo, W. (2010). Biometrics for electronic health records. J. Med Syst, 34(5): 975–83. doi:10.1007/ s10916-009-9313-6. |
[21] | Babamiri, B., Bahari, D., Salimi, A. (2019). Highly sensitive bioaffinityelectrochemiluminescence sensors: Recent advances and future directions. Biosensors and Bioelectronics, 111530. DOI: https://doi.org/10.1016/j.bios.2019.111530. |
[22] | Khan, R.I. and Pathan, A.S. (2018). The state-of-the-art wireless body area sensor networks: A survey. International Journal of Distributed Sensor Networks, 14(4): 1–16. DOI: 10.1177/1550147718768994. |
[23] | Glasgow, R.E. (1995). A Practical Model of Diabetes Management and Education. Diabetes Care, 18(1): 117–126. |
[24] | Bashshur, R.L. Howell, J.D., Krupinski, E.A., Harms, K.M., Bashshur, N., Doarn, C.R. (2016). The empirical foundations of telemedicine interventions in primary care. Telemedicine E-Health, 22(5): 342–75. doi:10.1089/tmj.2016.0045. |
[25] | Mitchell, M. and Kan, L. (2019). Digital Technology and the future of Health Systems. Health Systems & Reform, 5(2), 11-120, DOI: 10.1080/23288604.2019.1583040. |
[26] | WHO. (2019). WHO developing guidelines for recommendations on digital health interventions for RMNCAH and health systems strengthening. url: https://who.int/reproductivehealth/topics/mhealth/digital-health-interventions/en/? [accessed 2019 Jan 19]. |
[27] | Dias, D and Cunha, J.P. (2018). Wearable health devices— vital sign monitoring, systems and technologies. Sensors, 18(8): 2414. doi:10.3390/s18082414. |
[28] | Wyber, R., Vaillancourt, S., Perry, W., Mannava, P., Folaranmi, T., Celi, L.A. (2015). Big data in global health: improving health in lowand middle-income countries. WHO. url: https://www.who.int/bulletin/volumes/93/3/14-139022/en/. [accessed 2019 Jan 19]. |
[29] | Bram, J.T., Warwick-Clark, B., Obeysekar, E., Mehta, K. (2015). Utilization and monetization of healthcare data in developing countries. Big Data, 3(2): 59–66. doi:10.1089/big.2014.0053. |
[30] | Baker, W.E. (2009). Evaluation of physician competency and clinical performance in emergency medicine. Emerg Med Clin North Am, 27(4): 615–26. doi:10.1016/j.emc.2009.07.010. |
[31] | Ross MK, Wei W, Ohno-Machado L. (2014) Big data and the electronic health record. Yearb Med Inform, 9:97–104. doi:10.15265/IY-2014-0003. |
[32] | WHO. (2016). Global observatory for eHealth. Geneva (Switzerland): Malawi. World Health Organization. url: https://www.who.int/goe/policies/countries/mwi/en/ [accessed 2019 Jan 19]. |
[33] | Agarwal, N. and Hussain, S.Z. (2018). A Closer Look at Intrusion Detection System for Web Applications. Security and Communication Networks, 1–28. DOI: https://doi.org/10.1155/2018/96013. |
[34] | Butun I., Morgera S., Sankar R. (2014). A survey of intrusion detection systems in wireless sensor networks. IEEE Commun. Surv. Tutor, 16: 266–282. DOI: 10.1109/SURV.2013.050113.00191. |
[35] | Butun I., Ra I.H., Sankar R. (2015). PCAC: Power-and Connectivity-Aware Clustering for Wireless Sensor Networks. EURASIP J. Wirel. Commun. Netw., 1:1–15. DOI: 10.1186/s13638-015-0321-6. |
[36] | Forouzanfar M.H., Alexander, L., Anderson, H.R., Bachman, V.F., Biryukov, S., Brauer, M., Burnett, R., Casey, D., Coates, M.M., Cohen, A., Delwiche, K., Estep, K., Frostad, J.J., Astha, K.C., Kyu, H.H., Moradi-Lakeh, M., Ng, M…. et al., (2015). Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 386(10010): 2287-323. DOI: 10.1016/S0140-6736(15)00128-2. |
[37] | Mowafi, H; Sakr, H; Ravaghi, H; Elmahal, O; Slama, S; Samhouri, D. and Relan, P. (2020). Leveraging the COVID-19 response to improve emergency care systems in the Eastern Mediterranean Region. East Mediterr Health J. 2020; 26(6): 626-629. https://doi.org/10.26719/2020.26.6.626. |
[38] | WHO (World Health Organization). (2020). Media Briefing. WHO Director-General’s opening remarks at the media briefing on COVID-19. Geneva: World Health Organization; 11 March 2020. (http://suo.im/6e2GTH, accessed 26 March 2020). |
[39] | WHO (World Health Organization). (2005). WHO Eastern Mediterranean Region: Joint External Evaluation Mission Reports. Geneva: World Health Organization; 2005. |
[40] | WHO (World Health Organization). (2018). Emergency Care System Framework. Geneva: World Health Organization; 2018. (https://www.who.int/publications-detail-redirect/who-emergency-care-system-framework, accessed 17 June 2020). |
[41] | McKay, D., Heisler, M., Mishori, R., Catton, H., Kloiber, O. (2020). Attacks against health-care personnel must stop, especially as the world fights COVID-19. Lancet, 395(10239): 1743-5. |
[42] | WHO (World Health Organization). (2020). Investing in and building longer-term health emergency preparedness during the COVID-19 pandemic: Interim Guidance for WHO Member States, July 2020. Geneva: World Health Organization; 2020 (WHO/2019-nCoV/Emergency_Preparedness/Long_term/2020.1). Licence: CCBY-NC-SA 3.0 IGO. |