[1] | H. Shi, O. Belbin, C. Medway, K. Brown, N. Kalsheker, M. Carrasquillo, et al., Genetic variants influencing human aging from late-onset Alzheimer's disease (LOAD) genome-wide association studies (GWAS), Neurobiol Aging 33(8) (2012) 1849.e5-18. |
[2] | B. Jiao, X. Liu, L. Zhou, M.H. Wang, Y. Zhou, T. Xiao, et al., Polygenic Analysis of Late-Onset Alzheimer's Disease from Mainland China, PLoS One 10(12) (2015) e0144898. |
[3] | L. Bertram, R.E. Tanzi, Genome-wide association studies in Alzheimer's disease, Hum Mol Genet. 18(R2) (2009) R137-45. |
[4] | M.I. Kamboh, F.Y. Demirci, X. Wang, R.L. Minster, M.M. Carrasquillo, V.S. Pankratz, et al., Genome-wide association study of Alzheimer's disease, Transl Psychiatry 2 (2013) e117. |
[5] | J.C. Lambert, S. Heath, G. Even, D. Campion, K. Sleegers, M. Hiltunen, et al., Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease, Nat Genet. 41(10) (2009) 1094-9. |
[6] | R. Guerreirom, A. Wojtasm, J. Brasm, M. Carrasquillom, E. Rogaevam, E. Majouniem, et al., TREM2 variants in Alzheimer's disease, N Engl J Med. 368(2) (2013) 117-27. |
[7] | C. Cruchaga,, C.M. Karch,, S.C. Jin, B.A. Benitez, Y. Cai, R. Guerreiro, et al., Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease, Nature 505(7484) (2014) 550-554. |
[8] | B. Jiao, B. Tang, X. Liu, X. Yan, L. Zhou, Y. Yang, et al., Identification of C9orf72 repeat expansions in patients with amyotrophic lateral sclerosis and frontotemporal dementia in mainland China, Neurobiol Aging 35(4) (2014) 936.e19-22. |
[9] | M.K. Wetzel-Smith, J. Hunkapiller, T.R. Bhangale, K. Srinivasan, J.A. Maloney, J.K. Atwal, et al., A rare mutation in UNC5C predisposes to late-onset Alzheimer's disease and increases neuronal cell death, Nat Med. 20(12) (2014) 1452-7. |
[10] | D. Harold, R. Abraham, P. Hollingworth, R. Sims, A. Gerrish, M.L. Hamshere, et al., Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease, Nat Genet. 41(10) (2009) 1088-93. |
[11] | S. Seshadri, A.L. Fitzpatrick, M.A. Ikram, A.L. DeStefano, V. Gudnason, M. Boada, et al., Genome-wide analysis of genetic loci associated with Alzheimer disease, JAMA 303(18) (2010) 1832-40. |
[12] | A.C. Naj, G. Jun, G.W. Beecham, L.S. Wang, B.N. Vardarajan, J. Buros, et al., Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease, Nat Genet. 43(5) (2011) 436-41. |
[13] | J.C. Lambert, C.A. Ibrahim-Verbaas, D. Harold, A.C. Naj, R. Sims, C. Bellenguez, et al., Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease, Nat Genet. 45(12) (2013) 1452-8. |
[14] | P. Hollingworth, D. Harold, R. Sims, A. Gerrish, J.C. Lambert, M.M. Carrasquillo, et al., Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease, Nat Genet. 43(5) (2011) 429-35. |
[15] | C.M. Karch, A.T. Jeng, P. Nowotny, J. Cady, C. Cruchaga, A.M. Goate, Expression of novel Alzheimer's disease risk genes in control and Alzheimer's disease brains, PLoS One 7(11) (2012) e50976. |
[16] | J.H. Moore, F.W. Asselbergs, S.M. Williams, Bioinformatics challenges for genome-wide association studies, Bioinformatics 26(4) (2010) 445-55. |
[17] | R.C. Petersen, P.S. Aisen, L.A. Beckett, M.C. Donohue, A.C. Gamst, D.J. Harvey, et al., Alzheimer's Disease Neuroimaging Initiative (ADNI): clinical characterization, Neurology 74(3) (2010) 201-9. |
[18] | G. McKhann, D. Drachman, M. Folstein, R. Katzman, D. Price, E.M. Stadlan, Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease, Neurology 34(7) (1984) 939-44. |
[19] | S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M.A. Ferreira, D. Bender, et al., PLINK: a tool set for whole-genome association and population-based linkage analyses, Am J Hum Genet. 81(3) (2007) 559-75. |
[20] | AlzGene – Field Synopsis of Genetic Association Studies in AD, Http://www.alzgene.org/ Last accessed on 2nd January 2019. |
[21] | J. Nettiksimmons, G. Tranah, D.S. Evans, J.S. Yokoyama, K. Yaffe, Gene-based aggregate SNP associations between candidate AD genes and cognitive decline, Age (Dordr). 38(2) (2016) 41. |
[22] | H.J. Cordell, Detecting gene-gene interactions that underlie human diseases, Nat Rev Genet. 10(6) (2009) 392-404. |
[23] | X. Chen, H. Ishwaran, Random forests for genomic data analysis, Genomics 99(6) (2012) 323-9. |
[24] | B. Wu, T. Abbott, D. Fishman, W. McMurray, G. Mor, K. Stone, et al., Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data, Bioinformatics 19(13) (2003) 1636-43. |
[25] | J.W. Lee, J.B. Lee, M. Park, S.H. Song, An extensive comparison of recent classification tools applied to microarray data, Computational Statistics & Data Analysis 48(4) (2005) 869-885. |
[26] | M. García-Magariños, I. López-de-Ullibarri, R. Cao, A. Salas, Evaluating the ability of tree-based methods and logistic regression for the detection of SNP-SNP interaction, Ann Hum Genet. 73(Pt 3) (2009) 360-9. |
[27] | A.M. Molinaro, N. Carriero, R. Bjornson, P. Hartge, N. Rothman, N. Chatterjee, Power of data mining methods to detect genetic associations and interactions, Hum Hered. 72(2) (2011) 85-97. |
[28] | F.F. Sherif, N. Zayed, M. Fakhr, Discovering Alzheimer Genetic Biomarkers Using Bayesian Networks, Adv Bioinformatics 2015 (2015) 639367. |
[29] | M.M. Abd El Hamid, Y.M.K. Omar, M.S. Mabrouk, Identifying genetic biomarkers associated to Alzheimer's disease using Support Vector Machine, Biomedical Engineering Conference (CIBEC), 8th Cairo International (2016). |
[30] | S. Abo Alchamlat, F. Farnir, KNN-MDR: a learning approach for improving interactions mapping performances in genome wide association studies, BMC Bioinformatics 18(1) (2017) 184. |
[31] | W. Yu, S. Lee, T. Park, A unified model based multifactor dimensionality reduction framework for detecting gene-gene interactions, Bioinformatics 32(17) (2016) i605-i610. |