[1] | Bourne RR, Taylor HR, Flaxman SR, Keeffe J, Leasher J, Naidoo K, et al. Vision Loss Expert Group of the Global Burden of Disease Study. Number of people blind or visually impaired by glaucoma worldwide and in world regions 1990-2010: a meta-analysis. PLoS One 2016; 11(10): e0162229. |
[2] | Tham Y, Li X, Wong T, Quigley H, Aung T, Cheng C. Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040. A Systematic Review and Meta-analysis. Ophthalmology 2014; 121:2081-2090. |
[3] | Goel M, Picciani R, Lee R, Bhattacharya S. Aqueous Humor Dynamics: A Review. The Open Ophthalmology Journal 2010; 4:52-59. |
[4] | Gause S, Hsu K, Shfor C, Dixon P, Powell K, Chauhan A. Mechanistic modeling of ophthalmic drug delivery to the anterior chamber by eye drops and contact lenses. Adv Colloid Interface Sci. 2016; 233:139-154. |
[5] | Ethier C, Johnson M, Ruberti J. Ocular biomechanics and biotransport. Annu. Rev. Biomed. Eng. 2004; 6:249–73. |
[6] | Maurice D, Sources of Error in the Fluorometric Measure of Aqueous Flow. The XIII International Congress of Eye Research, Paris, France – July 1998; 26-31. |
[7] | Gheith M, Mayer J, Siam G, Daniela S, Monteiro de Barros, Tricia L, et al. Managing refractory glaucoma with a fixed combination of bimatoprost (0.03%) and timolol (0.5%) Clinical Ophthalmology 2008; 2(1): 15–19. |
[8] | Chrai S, Robinson J. Corneal permeation of topical pilocarpine nitrate in the rabbit. Am. J. Ophthalmol. 1977; 77: 735-739. |
[9] | Molteno A. New implant for drainage in glaucoma. Br. J. Ophthalmol. 1969; 53:606–615. |
[10] | Coleman A, Hill R, Wilson M, Choplin N, S-Neumann R, Tam M, et al. Initial Clinical Experience With the Ahmed Glaucoma Valve Implant. Am. J Ophthalmol. 1995; 20(1): 23-31. |
[11] | Williamson B, Hawkey N, Blake D, Frenkel J, McDaniel K, Davis J, Satija C, et al. The effects of glaucoma drainage devices on oxygen tension, glycolytic metabolites, and metab-lomics profile of aqueous humor in the rabbit. Trans Vis Sci Tech. 2018; 7(1): 14. |
[12] | Cui L, Li D, Liu J, Zhang L, Xing Y. Intraocular pressure control of a novel glaucoma drainage device - in vitro and in vivostudies. Int J Ophthalmol. 2017; 10(9): 1354-1360. |
[13] | Carvalho I, Marques C, Oliveira R, Coelho P, Costa C, Ferreira D. Sustained drug release by contact lenses for glaucoma treatment. A review Journal of Controlled Release. 2015; 202:76–82. |
[14] | Furqan A, Maulvi, Tejal G, Shah S. A review on therapeutic contact lenses for ocular drug delivery. Drug Delivery. 2016; 23(8): 3017-3026. |
[15] | Filipe H, Henriques J, Reis P., Silva P, Quadrado M, Serro A. Contact lenses as drug controlled release systems: A narrative review. Rev Bras Oftalmol. 2016; 75(3): 241-7. |
[16] | Maulvi F, Lakdawala D, Shaikh A, Desai A, Choksi H, Vaidya R, et al. In vitro and in vivo evaluation of novel implantation technology in hydrogel contact lenses for controlled drug delivery. Journal of Controlled Release. 2016; 226: 47–56. |
[17] | Murdan S. Electro-responsive drug delivery from hydrogels. Journal of controlled release. 2003; 92:1-17. |
[18] | Luo R, Cao Y, Shi P, Chen C. Near-Infrared light responsive multi-compartmental hydrogel particles synthesized through droplets assembly induced by superhydrophopic surface. Small. 2014; 10(23): 4886-94. |
[19] | Willner I, Stimuli-Controlled Hydrogels and Their Applications. Chem. Res. 2017; 50: 657−658. |
[20] | Maulvi F, Choksi H, Desai A, Patel A, Rancha K, Vyas B, Shahb D. Colloids and Surfaces B: Biointerfaces. 2017; 157: 72–82. |
[21] | Chiang B, Kim Y, Doty A, Grossniklaus H, Schwendeman S, Prausnitz M. Sustained reduction of intraocular pressure by supraciliary delivery of brimonidine-loaded poly (lactic acid) microspheres for the treatment of glaucoma. Journal of Controlled Release. 2016; 228: 48–57. |
[22] | Kim J, Kudisch M, Mudumba S, et al. Biocompatibility and pharmacokinetic analysis of an intracameral polycaprolactone drug delivery implant for glaucoma. Invest Ophthalmol Vis Sci. 2016; 57: 4341–4346. |
[23] | Kim J, Kudischb M, Silvab N, Asadac H, Aya-Shibuyac E, Bloomerb M, et al. Long-term intraocular pressure reduction with intracameral polycaprolactone glaucoma devices that deliver a novel anti-glaucoma agent. Journal of Controlled Release. 2018; 269: 45–51. |
[24] | Rizq R, Choi W, Eilers D, Wright M, Ziaie B. Intraocular pressure measurement at the choroid surface: a feasibility study with implications for implantable microsystems. The British journal of ophthalmology. 2001; l. 85(7): 868-71. |
[25] | Leonardi M, Pitchon E, Bertsch A, Renaud P, and Mermoud A. Wireless contact lens sensor for intraocular pressure monitoring: assessment on enucleated pig eyes Actaophthalmologica. 2009; 87(4): 433-7. |
[26] | Mansouri K, Medeiros F, Tafreshi A, Robert N. Continuous 24-hour Intraocular Pressure Monitoring with a Contact Lens Sensor: Safety, Tolerability, and Reproducibility in Glaucoma Patients. Arch Ophthalmol. 2012; 30(12). |
[27] | Zeng P, Cui Q, Wu M, Chen P, Cheng M. Wireless and Continuous Intraocular Pressure Sensors Using Transparent Graphene. ieeeexplore: 978-1-4799-8287-5/16/$31.00 ©2016 IEEE. |
[28] | Paulsona G, Jobin K. Design of NEMS Based Intraocular Pressure Sensing System. Procedia Technology. 2016; 25:100–106. |
[29] | Piso D, Crespo P, Vecino E. Modern Monitoring Intraocular Pressure Sensing Devices Based on Application Specific Integrated Circuits. Journal of Biomaterials and Nanobiotechnology. 2012; 3:301-309 http://dx.doi.org/10.4236/jbnb.2012.322037 Published Online May 2012 (http://www.SciRP.org/journal/jbnb) 301. |
[30] | Embedded contact lenses monitor glucose levels in tears (cited March. 12, 2018) https://www.ledinside.com/news/2018/3/led_embedded_contact_lenses_monitor_glucose_levels_in_tears - 15:14 — Evangeline_H 1138. |
[31] | Hamid O, and Jones P. A new microcomputer controlled solid-state ocular fluorophotometer. Proceedings of the VI Medical and Biological Engineering. pub. AIIMB, Naples. 1992; 1; 353-356. |
[32] | Jones P, Hamid O. A solid–state digital ophthalmic fluorophotometer for anterior segment studies. Proceedings of the 14th annual international conference of the IEEE Engineering in Medicine and Biology society. Paris. 1992; 4: 1598-1599. |
[33] | Slate B, Sheppard C, Rideout C, Blackstone H. Closed-loop nitroprusside infusion: Modelling and control theory for clinical application. Proceedings of IEEE International Symposium on Circuits Systems. 1980; 482–488. |
[34] | Luu K, Zhang E, Prasanna G, Xiang C, Anderson S, Fortner J, and Vicini P. Pharmacokinetic - Pharmacodynamic and Response Sensitization Modeling of the Intraocular Pressure-Lowering Effect of the EP4 Agonist 5-{3-[(2S)-2-{(3R)-3-hydroxy-4-[3-(trifluoromethyl)phenyl]butyl}-5-oxopyrrolidin-1- yl]propyl}thiophene-2-carboxylate (PF-04475270). The J Pharmacol Exp Ther. 2009; 331(2): 627–635. |
[35] | Prasanna G, Fortner J, Xiang C, Zhang E, Carreiro S, Anderson S, et. al. Ocular pharmacokinetics and hypotensive activity of PF-04475270, an EP4 prostaglandin agonist in preclinical models. Experimental Eye Research. 2009; 89: 608–617. |
[36] | Patent US20140194834-Auto-Regulation System for Intraocular Pressure-Google Patents. http://wwwhttp://www.google.com/patents/US20140194834. 5/1/2016. |
[37] | Omer Hamid. Intraocular Pressure Model Predictive Control. American Journal of Biomedical Engineering 2016; 6 (1): 1-11. |
[38] | Liuping Wang Model Predictive Control System Design and Implementation Using MATLAB® © 2009 Springer-Verlag London Limited. |
[39] | Omer Hamid. Intraocular Pressure Model Predictive Control: A Simulation of Circadian and Mean Intraocular Pressure Control. International Journal of Engineering and Advanced Technology (IJEAT). 2016; 5(5): 190-195. |