[1] | R.F. LaPrade, J.C. Botker, Donor site morbidity after osteochondral autograft transfer procedures, Arthroscopy, Vol. 20, No.7, (2004), p. e69-e73. |
[2] | R.A. Mischkowski, C. Domingos-Hadamitzky, M. Siessegger, M.J. Zinser, J.E. Zoller, Donor site morbidity of ear cartilage autographs. Plast. Reconstr. Surg. Vol. 121, No.1, (2008) p. 79-87. |
[3] | V. Ng, Risk of disease transmission with bone allograft, Orthopaedics, Vol. 35, No.8, (2012) p. 679-681. |
[4] | A. Khademhosseini, J.P. Vancanti, R. Langer, Progress in tissue engineering, Sci Am., Vol. 300, No.5, (2009), p. 64-71. |
[5] | G. Poinern, R. Shackleton, S.I. Mamun, D. Fawcett, Significance of novel bioinorganic anodic aluminum oxide nanoscaffolds for promoting cellular response, Nanotechnology, Science and Applications, Vol. 4, (2011), p. 11–24. |
[6] | E.K. Yim, K.W. Leong, Significance of synthetic nanostructures in dictating cellular response, Nanomedicine, Vol. 1, No.1, (2005), p. 10–21. |
[7] | F.M. Veronese, O. Schiavon, G. Pasut, R. Mendichi, L. Andersson, A. Tsirk,J. Ford, G. Wu, S. Kneller, J. Davies, R, Duncan, PEG–doxorubicin conjugates: influence of polymer structure on drug release, in vitro cytotoxicity, bio-distribution, and antitumor activity, Bioconjug. Chem. Vol. 6, No.4, (2005), p. 775–784. |
[8] | H.L. Wong, A.M. Rauth, R. Bendayan, J. Manias, M. Ramaswamy, Z. Liu, S. Erhan, X. Wu, A new polymer–lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells, Pharm. Res. Vol. 23, No.7, (2006), p. 1574–1585. |
[9] | M.D. Timmer, H. Shin, R.A. Horch, C.G. Ambrose, A.G. Mikos, In vitro cytotoxicity of injectable and biodegradable poly (propylene fumarate)-based networks: unreacted macromers, cross-linked networks, and degradation products, Biomacromolecules, Vol. 4, No.4, (2003), p.1026–1033. |
[10] | J.M. Anderson, A. Rodriguez, D.T. Chang, Foreign body reaction to biomaterials. Semin. Immunol., Vol. 20, (2008), p. 86-100. |
[11] | G.A. Rodan, Bone homeostasis, Proc. Natl. Acad. Sci., USA: Vol. 95, (1998), p. 13361-13362. |
[12] | T.J. Webster, R.W. Siegel, R. Bizios, Enhanced functions of osteoblasts on nano-Phase ceramics, Biomaterials, Vol. 21, (2000), p. 1803-1811. |
[13] | P. Boutin, M. Hamadouche, J. Daussange, M.E. Bolander, L. Sedel, Alumina-on-Alumina Total Hip Arthroplasty: A Minimum 18.5-Year Follow-up Study, J. Bone. Joint. Surg. Am., Vol. 84, (2002), p. 69–77. |
[14] | OnlineAvailable: http://www.aoa.org.au/ |
[15] | L. Lars, The Bone and Joint Decade 2000 -2010. Bull World Health Organ[online]. Vol. 81, (2003), p. 629-629. |
[16] | R. Murugan, S. Ramakrishna, Development of nanocomposites for bone grafting. Comp. Sci. Technol., Vol. 65, (2005), p. 2385-2406. |
[17] | A.J. Salgoda, O.P. Coutinho, R.L. Reis, Bone tissue engineering: state of the art and future trends, Macromol. Biosci., Vol. 4, (2004), p. 743-765. |
[18] | K.V. Sudhakar, Metallurgical investigation of a failure in 316L stainless steel orthopaedic implant, Eng. Fail. Anal., Vol. 12, (2005), p. 249-256. |
[19] | N. Hallab, K. Merritt, J.J. Jacobs, Metal Sensitivity in Patients with Orthopaedic Implants, J. Bone Joint Surg. Am., Vol. 83, (2001), p. 428-428. |
[20] | M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants – A review, Mater. Sci., Vol. 54, (2009), p. 397-425. |
[21] | Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review of polymer nanofibres by electrospinning and their applications in nanocomposites, Comp. Sci. Tech., Vol. 63, (2003), p. 2223-2253. |
[22] | J. C. Middleton, A. J. Tipton, Synthetic biodegradable polymers as orthopaedic devices, Biomaterials, Vol. 21, (2000), p. 2335-2346. |
[23] | J .O. Hollinger, J. Brekke, E. Gruskin, D. Lee, Role of bone substitutes. Clin .Orthop .Relat Res., Vol. 324, (1996), p. 55-65. |
[24] | J. R. Liebermann, G. E. Friedlaender, ed. Bone Regeneration and Repair: Biology and Clinical Application, Humana Press, Totowa, Chap 8, (2005), p. 133-156. |
[25] | C.S. Cutter, B.J. Mehrara, Bone grafts and substitutes, J. Long Term Eff. Med. Implants, Vol. 16, (2006), p. 249-260. |
[26] | A. Nather, Bone Grafts and Bone Substitutes, Basic Science and Clinical Applications, World Scientific, New Jersey, (2005), p. 445-458. |
[27] | J.D. Bronzinno, ed. Tissue Engineering and Artificial Organs (The Biomedical Engineering Handbook). 3rd edition, Taylor & Francis group, CRC Press, Boca Raton, USA, Chap 38, (2006). |
[28] | S. Ramakrishna, M. Ramalingam, T.S. Sampath, W.O. Soboyejo, Biomaterials: A Nano Approach. CRC Press, Boca Raton, USA, Chap 7, (2010), p. 188-196. |
[29] | J.Y. Rho, L. Kuhn-Spearing, P. Zioupos, Mechanical properties and the hierarchical structure of bone, Med. Eng. Phy. Vol., 20, (1998), p. 92-102. |
[30] | W.Gerike, V. Bienengraber, K.O. Henkel, T. Bayerlein, P. Proff, T. Gedrange, Th. Gerber, The manufacture of synthetic non-sintered and degradable bone grafting substitutes, Folia Morphologica, Vol. 65, (2006), p. 54-55. |
[31] | W. Götz, T. Gerber, B. Michel, S. Lossdörfer, K.O. Henkel, F. Heinemann, Immunohistochemical characterization of nanocrystalline Hydroxyapatite silica gel (Nanobone®) osteogenesis: a study on biopsies from human jaws, Clin. Oral Impl. Res., Vol. 19, (2008), p. 1016-1026. |
[32] | D. G. Steele, C. A. Bramblett, The Anatomy and Biology of the Human Skeleton, A&M University Press, Texas, 1988. |
[33] | R.S Tuan, Developmental Skeletogenesis, in bone formation and repair, Brighton C.T, Friedlaender G, Lane J.M, Editor, American Academy of Orthopaedic Surgeons: Rosemont, IL, USA, (1994), p.13-22. |
[34] | K. Tezuka, Y. Tezuka, A. Maejima, T. Sato, K. Nemoto, H. Kamioka, Y. Hakeda, M. Kumegawa, Molecular cloning of a possible cysteine proteinase predominantly expressed in osteoclasts, J. Biol. Chem. Vol., 269, (1994), p. 1106-1109. |
[35] | J. Y. Rho, L. Kuhn-Spearing, P. Zioupos, Mechanical properties and the hierarchical structure of bone, Med. Eng. Phys., Vol. 20, (1998), p. 92–102. |
[36] | M.N. Dean, B.O. Swanson, A. P. Summers, Biomaterials: Properties, variation and evolution, Integr. Comp. Biol. Vol. 49, (2009), p. 15–20. |
[37] | P. Fratzl, H. S. Gupta, E. P. Paschalis, P. Roschger, Structure and mechanical quality of the collagen-mineral nanocomposite in bone, J. Mater. Chem. Vol., 14, (2004), p. 2115–2123. |
[38] | H. Gray, L.H Bannister, M.M. Berry, P.L. Williams, Gray’s Anatomy: The Anatomical Basis of Medicine and Surgery, Pub Churchill Livinstone Edinburgh 1995. |
[39] | K. S. Saladi, Anatomy physiology: The unity of form and function. 4th Edition McGraw Hill, Chapter 7, (2007), p. 214-240. |
[40] | M. J. Olszta, X. Cheng, S.S. Jee, R. Kumar, Y.Y. Kim, M.J. Kaufman, E.P. Douglas, L.B. Gower, Bone structure and formation: A new perspective, Mat. Sci. Eng. R. Vol. 58, (2007), p.77–116. |
[41] | N. Shepard, Role of proteoglycans in calcification, in: E. Bonucci (Ed.), Calcification in Biological Systems, CRC Press, Boca Raton, 1992, p.41. |
[42] | I.C. Bonzani, J.H. George, M.M. Stevens, Novel materials for bone and cartilage regeneration. Curr. Opin. Chem. Biol., Vol. 10, No.6, (2006), p. 568-575. |
[43] | E.P. Katz, E. Wachtel, M. Yamauichi, G.L. Mechanic, The structure of mineralized collagen fibrils, Connect. Tissue Res., Vol. 21, (1989), p. 149-158. |
[44] | W. J. Landis, M.J. Song, A.Leith, L. McEwen, B.F. McEwen, Mineral and organic matrix interaction in normally calcifying tendon visualized in 3 dimensions by high-voltage electron-microscopic tomography and graphic image-reconstruction, J. Struct. Biol., Vol. 110, (1993), p. 39–54. |
[45] | B. Wopenka, J. D. Pasteris. A mineralogical perspective on the apatite in bone. Mater. Sci. Eng. C, Vol. 25, (2005), p. 131-143. |
[46] | S. Weiner, H.D. Wagner, The Material Bone: Structure-Mechanical Function Relations. Annu. Rev. Mater. Sci., Vol. 28, (1998), p. 271-298. |
[47] | C. Hellmich, F.J. Ulm, Average hydroxyapatite concentration is uniform in the extracollagenous ultrastructures of mineralized tissues: evidence at the 1-10 micron scale, Biomechan. Model. Mechanobiol., Vol. 2, (2003), p. 21-36. |
[48] | C.F. Nawrot, D.J. Campbell, A Chromatographic Study of the Relative Affinities of Rat Bone and Skin Collagen 1 Chains for Hydroxyapatite, J. Dent. Res., Vol. 56, (1977), p.1017-1022. |
[49] | W.F. Neuman, M. W. Neuman, The chemical dynamics of bone mineral, Chicago, The University of Chicago Press, 1958. |
[50] | R. Z. Le Geros, Properties of osteoconductive biomaterials: calcium phosphates. Clin. Orthop. Vol. 395, (2002), p. 81-98. |
[51] | C. R. F. Azevedo, Failure analysis of a commercially pure titanium plate for osteosynthesis, Eng.Fail. Anal., Vol. 10, (2003), p. 153-164. |
[52] | T. Hiermer, K. G. Schmitt-Thomas, Z.G. Yang, Mechanical properties and failure behaviour of cylindrical CFRP-implant-rods under torsion load, Composites Part A: Appl. Sci. Manufact., Vol. 29, (1998), p. 1453-1461. |
[53] | J. Russias, E. Saiz, R. K. Nalla, K. Gryn, R.O. Ritchie, A.P. Tomsia, Fabrication and mechanical properties of PLA/HA composites: A study of in vitro degradation, Mater. Sci. Eng. C, Vol. 26, (2006), p. 1289-1295. |
[54] | I. D. Thompson, L.L. Hench, Mechanical properties of bioactive glasses, glass-ceramics and composites, Proc. Inst. Mech. Eng. H, Vol. 212, (1998), p.127-136. |
[55] | D.F. Cunningham, J. Cunningham, Materials in clinical dentistry, Oxford University Press, 1979. |
[56] | D.W. Friedman, P.J. Orland, R.S. Greco, Biomaterials: An historical perspective. In implantion biology, Edited by Greco R.S, CRC Press, Boca Raton USA, (1994) p. 1-12. |
[57] | B.D. Ratner, Biomaterials Science: An introduction to materials in medicine, in biomaterials science: An inter-disciplinary endeavour. Academic Press, San Diego USA, (1996), p. 37-130. |
[58] | F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, F. Feyerabend, Degradable biomaterials based on magnesium corrosion, Current Opinion in Solid State and Materials Science, Vol. 12, (2008), p. 63-72. |
[59] | Z. Li, X. Gu, S. Lou, Y. Zheng. The development of binary Mg-Ca alloys for use as biodegradable materials within bone, Biomaterials, Vol. 29, (2008), p. 1329-1344. |
[60] | X.N. Gu, Y.F. Zheng, A review on magnesium alloys as biodegradable materials, Frontiers of Materials Science in China, Vol. 4, No.2, (2010), p. 111-115. |
[61] | OnlineAvailable:http://www.carbones.at/eng/Products/Magnesium-Mg-Alloys-and-Mg-Granules. |
[62] | P. Auerkari. Mechanical and physical propertries of engineering alumina ceramics. VTT Tiedotteita – Meddelanden – Research Notes 1792. |
[63] | M. P. E. Wenger, L. Bozec, M.A. Horton, P. Mesquida, Mechanical properties of collagen fibrils, Biophysical Journal, Vol. 93, (2007), p. 1255-1263. |
[64] | J. Black, G. W. Hastings, Handbook of biomaterials properties. Chapman & Hall, London, Great Britain, (1998). |
[65] | R. Cancedda, P. Giannoni, M. Mastrogiacomo, A tissue engineering approach to bone repair in large animal models and in clinical practice, Biomaterials, Vol. 28, (2007), p. 4240-4250. |
[66] | S.T. Kao, D.D. Scott, A Review of Bone Substitutes, Oral Maxillofac. Surg. Clin. North Am., Vol. 19, (2007), p. 513-521. |
[67] | J. J. Brems, Role of bone graft substitutes for glenoid bone defects, J. Shoulder Elbow Surg., Vol. 16, (2007), p. S282-S285. |
[68] | C. Song, H. Hisha, X. Wang, Q. Li, M. Li, W. Cui, K. Guo, S. Okazaki, T. Mizokami, J. Kato, Y.Cui, W. Feng, Y.Zhang, M. Shi, M. Inaba, H. Fan, S. Ikehara, Facilitation of hematopoietic recovery by bone grafts with intra-bone marrow-bone marrow transplantation, Immunobiology, Vol. 213, (2008), p. 455-468. |
[69] | O.S. Schindler, S.R. Cannon, T.W.R. Briggs, G.W. Blunn, Use of a novel bone graft substitute in peri-articular bone tumours of the knee, The Knee, Vol. 14, (2007), p. 458-464. |
[70] | R. Murugan, S. Ramakrishna, Development of nanocomposites for bone grafting, Comp. Sci. Technol., Vol. 65, (2005), p. 2385-2406. |
[71] | M. Long, H. J. Rack, Titanium alloys in total joint replacement – a materials science perspective. Biomaterials. Vol. 19, (1998), p.1621-1639. |
[72] | R. Murugan, S. Ramakrishna, Development of nanocomposites for bone grafting, Comp. Sci. Tech., Vol. 65, (2005), p. 2385-2393. |
[73] | D. F. Williams, Tissue-biomaterial interactions, J. Mater. Sci, Vol. 22, (1987), p. 3421-3445. |
[74] | M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants – A review, Prog. Mat. Sci. Vol. 54, (2009), p. 397-425. |
[75] | P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, K. De Groot, The role of hydrated silica, titania and alumina in inducing apatite on implants, J. Biomed. Mater. Res., Vol. 28, (1994), p. 7-15. |
[76] | D. F. Williams, Titanium for medical applications, in titanium in medicine, D.M. Brunette, P. Tengvall, M. Textor, P. Thomsen, Editors, Springer: Berlin, Germany, (2001), p. 561-585. |
[77] | F.W. Cooke, J.E. Lemons, B.D. Ratner, Properties of materials, in biomaterials science: An introduction to materials in science, B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, Editors: Academic Press, San Diego USA, (1996), p. 11-35. |
[78] | F.H. Silver, Scope and markets for medical implants, in biomaterials, medical devices and tissue engineering an integrated approach, F.H. Silver Editor: Chapman & Hall, London, (1994), p. 1-44. |
[79] | F. M. Veronese, O. Schiavon, G. Pasut, R. Mendichi, L. Andersson, A. Tsirk, J. Ford, G. Wu, S. Kneller, J. Davies, R. Duncan, PEG-Doxorubicin Conjugates: Influence of Polymer Structure on Drug Release, in Vitro Cytotoxicity, Bio-distribution, and Antitumor Activity, Bio-conjugate Chem., Vol. 16, (2005), p. 775-784. |
[80] | [H.L. Wong, A. M. Rauth, R. Bendayan, J. L. Manias, M. Ramaswamy, Z. Liu, S.Z. Erhan, X.Y. Wu, A New Polymer Y Lipid Hybrid Nanoparticle System Increases Cytotoxicity of Doxorubicin Against Multidrug-Resistant Human Breast Cancer Cells, Pharm. Res., Vol. 23, (2006), p. 1574-1585. |
[81] | M.D. Timmer, H. Shin, R.A. Horch, C.G. Ambrose, A.G. Mikos, In Vitro Cytotoxicity of Inject able and Biodegradable Poly(propylene fumarate)-Based Networks: Unreacted Macromers, Cross-Linked Networks, and Degradation Products, Biomacromolecules, Vol. 4, (2003), p. 1026-1033. |
[82] | E.C. Peters, M. Petro, F. Svec, J.M. J. Frechet, Molded Rigid Polymer Monoliths as Separation Media for Capillary Electro-chromatography. 1. Fine Control of Porous Properties and Surface Chemistry, Anal. Chem. Vol. 70, (1998), p. 2288-2295. |
[83] | D. C. Miller, T. Anil, K.M. Haberstroh, T. J. Webster, Endothelial and vascular smooth muscle cell function on poly (lactic-co-glycolic acid) with nano-structured surface features, Biomaterials, Vol. 25, (2004), p. 53–61. |
[84] | M. Ibn-Elhaj, M. Schadt, Optical polymer thin films with isotropic and anisotropic Nano corrugated surface topologies, Nature, Vol. 410, (2001), p. 796-799. |
[85] | B. Kasemo, Biological surface science, Curr. Opin. Solid State & Mater. Sci., Vol. 3, (1998), p. 451-459. |
[86] | B. Kasemo, J. Gold, Implant Surfaces and Interface Processes, J. Adv. Dent. Res., Vol. 13, (1999), p. 8-20. |
[87] | E.A. Vogler, D.A. Martin, D. B. Montgomery, J. Graper, H.W. Sugg, A Graphical Method for Predicting Protein and Surfactant Adsorption Properties, Langmuir, Vol. 9, (1993), p. 497-507. |
[88] | E.A. Vogler, A Thermodynamic Model of Short-Term Cell Adhesion In Vitro, Colloids & Surf., Vol. 42, (1989), p. 233-254. |
[89] | A. S. Andersson, F. Backhed, A.V. Euler, A. Richter-Dahlfors, D. Sutherland, B. Kasemo, Nanoscale features influence epithelial cell morphology and cytokine production, Biomaterials, Vol. 24, (2003), p. 3427–3436. |
[90] | L. Yang, Z. Li-Ming, Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources, J. carb pol., Vol. 76, (2009), p. 349–361. |
[91] | R. Sinha, K. Rachna, Polysaccharides in colon-specific drug delivery, Int. J. Pharma.Vol. 224, (2001), p. 19–38. |
[92] | G. Crini, Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment, J. Prog. Polym. Sci., Vol. 30, (2005), p. 38–70. |
[93] | A. Kanazawa, M. Suzuki, Solid-state poly-condensation of natural aldopentoses and 6-deoxyaldohexoses. Facile preparation of highly branched polysaccharide, Polymer, Vol. 47, (2006), p. 176–183. |
[94] | S .Run Cang, J. M. Fang, A. Goodwin, J. M. Lawther, A. J. Bolton, Fractionation and characterization of polysaccharides from abaca fibre, J .Carbohydrate Polymers, Vol. 37, (1998), p. 351–359. |
[95] | M. N. V. Ravi Kumar, A review of chitin and chitosan applications, React & Func. Poly., Vol. 46, (2000), p. 1–27. |
[96] | X. Wang, Y. Du, J. Luo, B. Lin, J.F. Kennedy, Chitosan/organic rectorite nanocomposite films: Structure, characteristic and drug delivery behaviour, Carbohydrate Polym., Vol. 69, (2007), p. 41–49. |
[97] | J. M. Dang, K. W. Leong, Natural polymers for gene delivery and tissue engineering, Adv. Drug Deli. Rev., Vol. 58, (2006), p. 487– 499. |
[98] | M. George, T. E. Abraham, Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan – a review, J. Control.Rel. Vol. 114, (2006), p. 1–14. |
[99] | D. Thacharodi, K. Panduranga Rao, Development and in vitro evaluation of chitosan-based transdermal drug delivery systems for the controlled delivery of propranolol hydrochloride, Biomoterials, Vol. 16, (1995), p. 145-148. |
[100] | M. Halbleib, S. Thomas, L. Claudio de, D. Von Heimburgc, H. Hauner, Tissue engineering of white adipose tissue using hyaluronic acid-based scaffolds. I: in vitro differentiation of human adipocyte precursor cells on scaffolds, Biomaterials, Vol. 24, (2003), p. 3125–3132. |
[101] | J. Jagur-Grodzinski, Biomedical application of functional polymers, Reac. & Func. Poly., Vol. 39, (1999), p. 99–138. |
[102] | M. G. Cascone, B. Sim, S. Dowries; Blends of synthetic and natural polymers as drug delivery systems for growth hormone, Biomaterials, Vol. 16, (1995), p. 569-574. |
[103] | K. Kafedjiiski, R.K.R. Jetti, F. Florian, H. Hoyer, M. Werle, M. Hoffer, A. Bernkop-Schnurch, Synthesis and in vitro evaluation of thiolated hyaluronic acid for mucoadhesive drug delivery, Int. J. Pharm., Vol. 343, (2007), p. 48–58. |
[104] | S. Jockenhoevel, G. Zund, S.P. Hoerstrup, K. Chalabi, J.S. Sachweh, L. Demircan, B.J. Messmer, M. Turina; Fibrin gel - advantages of a new scaffold in cardiovascular tissue engineering, Eur. J. Cardiothorac. Surg., Vol. 19, (2001), p. 424-430. |
[105] | E. A. Ryan, L. F. Mockros, A. M. Stern, L. Lorand, Influence of a Natural and a Synthetic Inhibitor of Factor XIIIa on Fibrin Clot Rheology, Biophys. J. Vol. 77, (1999), p. 2827–2836. |
[106] | S. Yunoki, T. Ikoma, J. Tanaka, Development of collagen condensation method to improve mechanical strength of tissue engineering scaffolds. Mater. Characterization, Vol. 61, (2010), p. 907-911. |
[107] | S. Ber, G. T. Köse, V. Hasirci, Bone tissue engineering on patterned collagen films: an in vitro study, Biomaterials, Vol. 26, (2005), p. 1977-1986. |
[108] | Y. Dong, F. Si-Shen, Methoxy poly(ethylene glycol)-poly (lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs, Biomaterials, Vol. 25, (2004), p. 2843–2849. |
[109] | X.L. Zheng, B. Kan, M.L. Gou, S.Z. Fu, J. Zhang, K. Men, L.J. Chen, F. Luo, Y.L. Zhao, X. Zhao, Y.Q. Wei, Z.Y. Qian, Preparation of MPEG–PLA nanoparticle for honokiol delivery in vitro, Int. J. Pharm., Vol. 386, (2010), p. 262–267. |
[110] | J. Chen, B. Tian, X. Yin, Y. Zhang, D.Hu, Z. Hu, M. Liu, Y. Pan, J. Zhao, H. Li, C. Hou, J. Wang, Y. Zhang, Preparation, characterization and transfection efficiency of cationic PEGylated PLA nanoparticles as gene delivery systems, J. Biotech., Vol. 130, (2007), p. 107–113. |
[111] | H. Kranz, R. Bodmeier, Structure formation and characterization of inject able drug loaded biodegradable devices: In situ implants versus in situ micro-particles, Eur. J. Pharm. Sci. Vol. 34, (2008), p. 164–172. |
[112] | J.M. Kanczler, P.J. Ginty, J.J.A. Barry, N.M.P. Clarke, S.M. Howdle, K.M. Shakesheff, R.O.C. Oreffo, The effect of mesenchymal populations and vascular endothelial growth factor delivered from biodegradable polymer scaffolds on bone formation, Biomaterials, Vol. 29, (2008), p. 1892-1900. |
[113] | L. Rimondini, N. Nicoli-Aldini, M. Fini, G. Guzzardella, M. Tschon, R. Giardino, In vivo experimental study on bone regeneration in critical bone defects using an injectable biodegradable PLA/PGA copolymer, Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. & Endod., Vol. 99, (2005), p. 148-54. |
[114] | C. F. L. Chu, A. Lu, M. Liszkowski, S. Rajender, Enhanced growth of animal and human endothelial cells on biodegradable polymers, Biochimica et Biophysica Acta, Vol. 1472, (1999), p. 479-485. |
[115] | L. Calandrelli, B. Immirzi, M. Malinconico, M. G. Volpe, A. Oliva, F. Della Ragione, Preparation and characterisation of composites based on biodegradable polymers for in vivo application, Polymer, Vol. 41, (2000), p. 8027-8033. |
[116] | Z. Wang, S. Wang, Y. Marois, R. Guidoin, Z. Zhang, Evaluation of biodegradable synthetic scaffold coated on arterial prostheses implanted in rat subcutaneous tissue, Biomaterials, Vol. 26, (2005), p. 7387–7401. |
[117] | T. Sato, G. Chen, T. Ushida, T. Ishii, N. Ochiai, T. Tateishi, J. Tanaka, Evaluation of PLLA–collagen hybrid sponge as a scaffold for cartilage tissue engineering, Mater. Sci. Eng. C, Vol. 24, (2004), p. 365–372. |
[118] | A. Aubert-Pouessel, M.C. Venier-Julienne, A. Clavreul, M. Sergent, C. Jollivet, C.N. Montero-Menei, E. Garcion, D.C. Bibby, P. Menei, J.P. Benoit, In vitro study of GDNF release from biodegradable PLGA microspheres, J. Control. Release. Vol. 95, (2004), p. 463– 475. |
[119] | M. Qiao, D. Chen, X. Ma, Y. Liu, Inject able biodegradable temperature-responsive PLGA–PEG–PLGA copolymers: Synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels, Int. J. Pharm , Vol. 294, (2005), p. 103–112. |
[120] | J. J. Lee, S. G. Lee, J. C. Park, Y. I. Yang, J. K. Kim, Investigation on biodegradable PLGA scaffold with various pore size structure for skin tissue engineering, CurrentAppl. Phys. Vol. 7, (2007), p. e37–e40. |
[121] | H. S. Yoo, T. G. Park, Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA–PEG block copolymer, J. Control. Release, Vol. 70, (2001), p. 63–70. |
[122] | M. Todo, S. D. Park, T. Takayama, K. Arakawa, Fracture micro-mechanisms of bio-absorbable PLLA/PCL polymer blends, Eng. Frac. Mech. Vol. 74, (2007), p.1872–1883. |
[123] | F. Rezgui, M. Swistek, J. M. Hiver, C. G’Sell, T. Sadoun, Deformation and damage upon stretching of degradable polymers (PLA and PCL), Polymer, Vol. 46, (2005), p. 7370–7385 . |
[124] | L. Calandrelli, B. Immirzi, M. Malinconico, M. G. Volpe, A. Oliva, F. D. Ragione, Preparation and characterization of composites based on biodegradable polymers for “in vivo” application, Polymer, Vol. 41, (2000), p. 8027-8033. |
[125] | B. Li, J. Yu, J. Jung, M. Ree, Amidolysis of some biodegradable polymers. Polym. Degrad. Stab., Vol. 65, (1999), p. 161-163. |
[126] | Y. Iwasaki, S. Sawada, K. Ishihara, G. Khang, H. B. Lee, Reduction of surface-induced inflammatory reaction on PLGA/MPC polymer blend, Biomaterials, Vol. 23, (2002), p. 3897–3903. |
[127] | Y. Li, J. Nothnagel, T. Kissel, Biodegradable brush-like graft polymers from poly(o,L-lactide) or poly(o,L-lactideco- glycolide) and charge-modified, hydrophilic dextrans as backbone-Synthesis, characterization and in vitro degradation properties, Polymer, Vol. 38, (1997), p. 6197-6206. |
[128] | Y. C. Wang, M. C. Lin, D. M. Wang, H. J. Hsieh, Fabrication of a novel porous PGA-chitosan hybrid matrix for tissue engineering, Biomaterials, Vol. 24, (2003), p. 1047–1057. |
[129] | C.Y. Hsieh, S.P. Tsai, D.M. Wang, Y.N. Chang, H.J. Hsieh, Preparation of γ-PGA/chitosan composite tissue engineering matrices, Biomaterials, Vol. 26, (2005), p. 5617–5623. |
[130] | K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials, Vol. 27, (2006), p. 3413–3431. |
[131] | L. Wan-Ju, C.T. Laurencin, E.J. Caterson, R.S. Tuan, F.K. Ko, Electrospun nanofibrous structure: A novel scaffold for tissue engineering, J. Biomed. Mater. Res., Vol. 60, (2002), p. 613-621. |
[132] | M. Schindler, I. Ahmed, J. Kamal, A.N.E. Kamal, T.H. Grafe, H. Young Chung, S. Meiners, A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture, Biomaterials, Vol. 26, (2005), p. 5624-5631. |
[133] | Y.Hu, D.W. Grainger, S.R. Winn, J. O. Hollinger, Fabrication of poly(a-hydroxy acid) foam scaffolds using multiple solvent systems, J. Biomed. Mater. Res. Vol. 59, (2002), p. 563–572. |
[134] | K.W. Chun, K.C. Cho, S.H. Kim, J.H. Jeong, T.G. Park, Controlled release of plasmid DNA from biodegradable scaffolds fabricated using a thermally-inducedhase separation method, Biomate. Sci. Polymer. Edn. Vol. 15, (2004), p. 1341–1353. |
[135] | S. Agarwal, J.H. Wendorff, A. Greiner, Progress in the Field of Electro-spinning for Tissue Engineering Applications, Adv. Mater., Vol. 21, (2009), p. 3343–3351. |
[136] | T.P. Kunzler, T. Drobek, M. Schuler, N. Spencer, Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients, Biomaterials, Vol. 28, (2007), p. 2175-2182. |
[137] | X. Liua, J.Y. Limb, H.J. Donahueb, R. Dhurjatic, A.M. Mastrod, E.A. Vogel, Influence of substratum surface chemistry/energy and topography on the human fetal osteoblastic cell line hFOB 1.19: Phenotypic and genotypic responses observed in vitro, Biomaterials, Vol. 28, (2007), p. 4535–4550. |
[138] | B.G. Keselowsky, D.M. Collard, A.J. Garcia, Surface chemistry modulates fibro-nectin conformation and directs integrin binding and specificity to control cell adhesion. J. Biomed. Mater. Res. A, Vol. 66A, (2003), p. 247–59. |
[139] | P.X. Ma, Biomimetric materials for tissue engineering, Adv. Drug. Del. Rev., Vol. 60, (2008), p. 184-198. |
[140] | J. Kreuter, Nanoparticulate systems for brain delivery of drugs, Adv. Drug. Del. Rev. Vol. 47, (2001), p. 65-81. |
[141] | M.L. Han, A.M. Lowman, Biodegradable nanoparticles for drug delivery and targeting, Curr. Opin. Solid State & Mat. Sci., Vol. 6, (2002), p. 319-327. |
[142] | J.J. Blaker, J.C. Knowles, R.M. Day, Novel fabrication techniques to produce microspheres by thermally induced phase separation for tissue engineering and drug delivery, Acta Biomater., Vol. 4, (2008), p. 264-272. |
[143] | S.K. Misra, D. Mohn, T.J. Brunner, W.J. Stark, S.E. Philips, I. Roy, V. Salih, J.C. Knowles, A.R. Boccaccini, Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites, Biomaterials, Vol. 29, (2008), p. 1750-1761. |
[144] | L.L. Hench, J. Wilson, An introduction to bioceramics, Hench L.L, Wilson J Editors: World Scientific Publishing Co Pte Ltd: Singapore, (1993), p. 1-24 |
[145] | L.L. Hench, Bioceramics: From concept to clinic, J. Am. Ceram. Soc. Vol. 74, (1991), p. 1487-1510. |
[146] | B. Ben-Nissan, Natural bioceramics: from coral to bone and beyond. Curr. Opin. Solid State & Mat. Sci. Vol. 7, (2003), p. 283-288. |
[147] | S.M. Best, A.E. Porter, E.S. Thian, J. Huang, Bioceramics: Past, present and for the future, J. Euro. Ceram. Soc., Vol. 28, (2008), p. 1319-1327. |
[148] | U. Gbureck, O. Grolms, J.E. Barralet, L.M. Grover, R.Thull, Mechanical activation and cement formation of[beta]-tricalcium phosphate, Biomaterials, Vol. 24, (2003), p. 4123-4131. |
[149] | D. Shi, G. Jiang, Synthesis of hydroxyapatite films on porous Al2O3 substrate for hard tissue prosthetics, Mater. Sci. Eng., Vol. 6, (1998), p. 175-182. |
[150] | A.A. Campbell, Bioceramics for implant coatings, Mater.Today, Vol. 6, (2003), p. 26-30. |
[151] | T.J. Webster, R.W. Siegel, R. Bizios, Enhanced functions of osteoblasts on nano-phase ceramics, Biomaterials, Vol. 21, (2000), p. 1803-1811. |
[152] | F. Tancret, J.M. Bouler, J.Chamousset , L.M. Minois, Modelling the mechanical properties of microporous and macroporous biphasic calcium phosphate bioceramics, J. Euro. Ceram. Soc., Vol. 26, (2006), p. 3647-3656. |
[153] | P.Q. Ruhe, J.G.C. Wolke, P.H.M. Spauwen, J.A. Jansen, Calcium phosphate ceramics for bone tissue engineering, in: Tissue Engineering, ed. J. P. Fisher, A. G. Mikos, CRC Press LLC, (2007), 9/1–9/18. |
[154] | E.E. Falco, J.S. Roth, J.P. Fisher, EH networks as a scaffold for skeletal muscle regeneration in abdominal wall hernia repair, J. Surg. Res., Vol. 149, (2008), p. 76-83. |
[155] | W. Mitchell, J.B. Matthews, M.H. Stone, J. Fisher, E. Ingham, Comparison of the response of human peripheral blood mononuclear cells to challenge with particles of three bone cements in vitro, Biomaterials, Vol. 24, (2003), p. 737-748. |
[156] | J.B. Park, J.D. Bronzino, Biomaterials principles and applications, CRC Press, Boca Raton, Florida, USA, 2003. |
[157] | I. Thompson, L.L. Hench, Medical applications of composites: In comprehensive composite materials, Edited: A. Kelly, C. Zweben, Amsterdam Elsevier Science, (2000), p. 727-753. |
[158] | P. Ducheyne, L.L. Hench, A. Kagan, M. Martens, A.Bursens, J.C. Mulier, Effect of hydroxyapatite impregnation on skeleton bonding of porous coated implants, J. Biomed. Mater. Res., Vol. 14, (1980), p. 225-231. |
[159] | S. Itoh, M. Kikuchi, Y. Koyama, H.N. Matumoto, K. Takakuda, K. Shinomiya, J. Tanaka, Development of a novel biomaterial, hydroxyapatite/collagen composite for medical use, J. Biomed. Mater. Eng., Vol. 15, (2005), p. 29-33. |
[160] | J.C. Elliot, Phosphates: Geochemical, Giobiological and material importantance, Edited by M.J. Kohn, J. Rakovan, J.M. Hughs, Chap: Calcium phosphate biomaterials: Rev. Min. Geo. Chem., Vol. 48, (2002), p. 427-455. |
[161] | H.C.W. Skinner, The scientific basis of orthopaedics; J.A. Albright, R.A. Brand, Editors, Chap: Bone mineralization, Appleton and Lange Press, Los Altos, California, USA, (2002), p. 199-211. |
[162] | P.N. Kumta, C. Sfeir, D.H. Lee, D. Olton, D. Choi, Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization, Acta Biomater. Vol. 1, (2005), p. 65-83. |
[163] | S.M. Best, A.E. Porter, E.S. Thian, J. Huang, Bioceramics: Past, present and for the future, J. Euro. Ceram. Soc., Vol. 28, (2008), p. 1319-1327. |
[164] | W.J. Dunn, Shear bond strength of an amorphous calcium-phosphate-containing orthodontic resin cement, Am. J. Orthod. Dentofacial Orthop., Vol. 131, (2007), p. 243-247. |
[165] | E.D. Eanes, Amorphous calcium phosphate. Monogram, Oral Sci., Vol. 18, (2001), p. 130-147. |
[166] | R.Z. LeGeros , Calcium phosphates in oral biology and medicine. Monogram, Oral Sci. Vol. 15, (1991), p. 1-201. |
[167] | M. Julien, I. Khairoun, R.Z. Le Geros, S. Delplace, P. Pilet, P. Weiss, G. Daculsi, J.M. Bouler, J. Guicheux, Physico-chemical-mechanical and in vitro biological properties of calcium phosphate cements with doped amorphous calcium phosphates, Biomaterials, Vol. 28, (2007), p. 956-965. |
[168] | R. Fujita, A. Yokoyama, Y. Nodasaka, T. Kohgo, T. Kawasaki, Ultrastructure of ceramic-bone interface using hydroxyapatite and[beta]-tricalcium phosphate ceramics and replacement mechanism of[beta]-tricalcium phosphate in bone, Tissue and Cell, Vol. 35, (2003), p. 427-440. |
[169] | F. Tancret, J.M. Bouler, J .Chamousset, L.M. Minois, Modelling the mechanical properties of microporous and macroporous biphasic calcium phosphate bioceramics, J. Euro. Ceram. Soc., Vol. 26, (2006), p. 3647-3656. |
[170] | S.J. Kalita, A. Bhardwaj, H.A. Bhatt, Nanocrystalline calcium phosphate ceramics in biomedical engineering, Mater. Sci. Eng. C, Vol. 27, (2007), p. 441-449. |
[171] | A.A. Campbell, Bioceramics for implant coatings, Mater. Today Vol. 6, (2003), p. 26-30. |
[172] | B. Wopenka, J.D. Pasteris, A mineralogical perspective on the apatite in bone, Mater. Sci. Eng C, Vol. 25, (2005), p. 131-143. |
[173] | S.V. Dorozhkin, Amorphous calcium (ortho) phosphates, Acta Biomater., Vol. 6, (2010), p. 4457-4475. |
[174] | E. Damien, P.A. Revell, Coralline hydroxyapatite bone substitute: A review of experimental studies and biomedical applications, J. Appl. Biomater. Biomech., Vol. 2, (2004), p. 65-73. |
[175] | D.W. Hutmacher, J.T. Schantz, C.X.F. Lam, K.C. Tan, T.C. Lim, State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective, J. Tissue Eng. Regen. Med., Vol. 1, (2007), p. 245-260. |
[176] | W.J.E.M. Habraken, J.G.C. Wolke, J.A. Jansen, Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering, Adv. Drug Deli. Rev. Vol. 59, (2007), p. 234-248. |
[177] | A. Blom, Which scaffold for which application, Curr. Orthop., Vol. 21, (2007), p. 280-287. |
[178] | P. Habibovic, K. de Groot, Osteoinductive biomaterials—properties and relevance in bone repair, J. Tissue Eng and Regen Med, Vol. 1, (2007), p. 25-32. |
[179] | S. J. Kalita, A. Bhardwaj, H.A. Bhatt, Nanocrystalline calcium phosphate ceramics in biomedical engineering, Mater. Sci. Eng. C, Vol. 27, (2007), p. 441-449. |
[180] | M. Taniguchi, H. Takeyema, I. Mizunna, N. Shinagawa, J. Yura, N. Yoshikawa, H. Aoki, The clinical application of intravenous catheter with percutaneous device made of sintered hydroxyapatite, Jpn. J. Artif. Organs, Vol. 20, (1991), p. 460-464. |
[181] | R.V. Silva, J.A. Camilli, C.A. Bertran, N.H. Moreira, The use of hydroxyapatite and autogenous cancellous bone grafts to repair bone defects in rats, Inter. J. Oral & Maxillofacial Surg., Vol. 34, (2005), p. 178-184. |
[182] | A. Stoch, W. Jastrzebski, E. Dlugon, W. Lejda, B. Trybalska, G.J. Stoch, A. Adamczyk, sol-gel derived hydroxyapatite coatings on titanium and its alloy Ti6Al4V, J. Mol. Struct., Vol. 744, (2005), p. 633-640. |
[183] | I. Ono, T. Tateshita, T. Nakajima, Evaluation of a high density polyethylene fixing system for hydroxyapatite ceramic implants, Biomaterials, Vol. 21, (2000), p. 143-151. |
[184] | M. Bonner, I.M. Ward, Hydroxyapatite/polyethylene composite: a novel bone substitute material, J. Mater. Sci. Lett., Vol. 20, (2001), p. 2049-2051. |
[185] | N.Y. Mostafa, P.W. Brown, Computer simulation of stoichiometric hydroxyapatite: Structure and substitutions, J. Phys. and Chem. of Solids Vol. 68, (2007), p. 431–437. |
[186] | M.P. Ginebra, T. Traykova, J.A. Planell, Calcium Phosphate Cements as Bone Drug Delivery Systems: A Review, J. Control. Release, Vol. 113, (2006), p. 102-110. |
[187] | J. Schnieders, U. Gbureck, R. Thull, T. Kissel, Controlled release of gentamicin from calcium phosphate-poly(lactic acid-co-glycolic acid) composite bone cement, Biomaterials, Vol. 27, (2006), p. 4239-4249. |
[188] | M. Baro, E. Sanchez, A. Delgado, A. Perera, C. Evora, In vitro-in vivo characterization of gentamicin bone implants, J. Control. Release, Vol. 83, (2002), p. 353-364. |
[189] | C.N. Cornell, D. Tyndall, S. Waller, J.M. Lane, B.D. Brause: Treatment of experimental osteomyelitis with antibiotic-impregnated bone graft substitute. J. Orthop. Res., Vol. 11, (1993), p. 619-626. |
[190] | A.O. Geoffrey, C.A. Andre, C. Arsenault, Nanochemistry: A chemical approach to nanometerials, Cambridge, UK: Royal Society of Chemistry, 2005. |
[191] | C. Guozhong. Nanostructures and nanomaterials. Imperial College Press, UK, (2004), p. 51-105. |
[192] | E.M. Christenson, K.S. Anseth, J. van den Beucken, C.K. Chan, E. Batur, J.A. Jansen, C.T. Laurencin, W.J. Li, R. Murugan, L.S. Nair, S. Ramakrishna, R.S. Tuan. T. J. Thomas, A.G. Mikos, Nanobiomaterial Applications in Orthopaedics, J. Orthop. Res. Vol. 25, (2007), p. 11-22. |
[193] | C. Kumar, Nanodevices for the life Sciences, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006. |
[194] | H.R.R. Ramay, M. Zhang, Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering, Biomaterials, Vol. 25, (2004), p. 5171-5180. |
[195] | M.H. Fathi, A. Hanifi, V. Mortazavi, Preparation and bioactivity evaluation of bonelike hydroxyapatite nanopowder, J. Mater. Process. Tech., Vol. 202, (2008), p. 536-542. |
[196] | Z. Shi, X. Huang, Y. Cai, R. Tang, D. Yang, Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells, Acta Biomater., Vol. 5, (2009), p. 338-345. |
[197] | J.S. Sun, H.C. Liu, W.H.S. Chang, J. Li, F.H. Lin, H.C. Tai, Influence of hydroxyapatite particle size on bone cell activities: An in vitro study, J. Biomed. Mater. Res. Vol. 39, (1998), p. 390-397. |
[198] | S. Pushpakanth, B. Srinivasan, B. Sreedhar, T.P. Sastry , An in situ approach to prepare nanorods of titania–hydroxyapatite (TiO2–HAp) nanocomposite by microwave hydrothermal technique, Mater. Chem. Phys., Vol. 107, (2008), p. 492-498. |
[199] | X. Wang, Y. Li, J. Wei, K. de Groot, Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites, Biomaterials, Vol. 23, (2002), p. 4787-4791. |
[200] | V.M. Rusu, C.H. Ng, M. Wilke, B. Tiersch, P. Fratzl, M.G. Peter, Size-controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials, Biomaterials, Vol. 26, (2005), p. 5414-5426. |
[201] | X. Wang, Y. Li, J. Wei, K. Groot, Development of biomimetic nano-hydroxyapatite/ poly (hexamethylene adipamide) composites, Biomaterials, Vol. 23, (2002), p. 4787-4791. |
[202] | V.M Rusu, C.H. Ng, M. Wilke, B. Tiersch, P. Fratzl, M.G. Peter, Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials, Biomaterials, Vol. 26, (2005), p. 5414-5426. |
[203] | J. Hu, Z.S. Liu, S.L. Tang, Y.M. He. Effect of hydroxyapatite nanoparticles on the growth and p53/c-Myc protein expression of implanted hepatic VX2 tumor in rabbits by intravenous injection, World J. Gastroenterol., Vol. 13, (2007), p. 2798-2802. |
[204] | J. Li,Y. Yin, F. Yao, L. Zhang, K. Yao, Effect of nano- and microhydroxyapatite/chitosan-gelatin network film on human gastric cancer cells, Mater. Lett., Vol. 62, (2008), p. 3220-3223. |
[205] | W.J.E.M. Habraken, J.G.C. Wolke, J.A. Jansen, Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering, Adv.Drug Deliv. Rev., Vol. 59, (2007), p. 234-248. |
[206] | N.D. Luong, I.S. Moon, D.S. Lee, Y.K. Lee, J.D. Nam, Surface modification of poly(l-lactide) electrospun fibers with nanocrystal hydroxyapatite for engineered scaffold applications, Mater. Sci. Eng. C, Vol. 28, (2008), p. 1242-1249 |
[207] | M.P. Ginebra, T. Traykova, J.A. Planell, Calcium phosphate cements as bone drug delivery systems: A review, J. Control. Release, Vol. 113, (2006), p. 102-110. |
[208] | V. Benezra Rosen, L.W. Hobbs, M. Spector, The ultrastructure of inorganic bovine bone and selected synthetic hydroxyapatites used as bone graft substitute materials, Biomaterials, Vol. 23, (2002), p. 921-928. |
[209] | A. Rabiei, T. Blalock, B.Thomas, J. Cuomo, Y. Yang, J. Ong, Microstructure, mechanical properties, and biological response to functionally graded HA coatings, Mater. Sci. Eng. C, Vol. 27, (2007), p. 529-533. |
[210] | G. Goller, F. N. Oktar, L.S. Ozyegin, E. S. Kayali, E. Demirkesen, Plasma-sprayed human bone-derived hydroxyapatite coatings: effective and reliable, Mater. Lett., Vol. 58, (2004), p. 2599-2604. |
[211] | M.B. Nair, S. Suresh Babu, H.K. Varma, A. John, A triphasic ceramic-coated porous hydroxyapatite for tissue engineering application, Acta Biomater., Vol. 4, (2008), p. 173-181. |
[212] | F. Chen, Z.C. Wang, C.J. Lin, Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials, Mater. Lett., Vol. 57, (2002), p. 858-861. |
[213] | Q.Z. Chen, C.T. Wong, W.W. Lu, K.M.C. Cheung, J.C.Y. Leong, K.D.K. Luk, Strengthening mechanisms of bone bonding to crystalline hydroxyapatite in vivo, Biomaterials, Vol. 25, (2004), p. 4243-4254. |
[214] | J.E. Davies, Bone bonding at natural and biomaterial surfaces, Biomaterials, Vol. 28, (2007), p. 5058-5067. |
[215] | S. Higashi, T. Yamamuro, T. Nakamura, Y. Ikada, S.H. Hyon, K. Jamshidi, Polymer-hydroxyapatite composites for biodegradable bone fillers, Biomaterials, Vol. 7, (1986), p.183-187. |
[216] | H. W. Kim, C. J. Knowles, H. E. Kim, Porous Scaffolds of Gelatin–Hydroxyapatite Nanocomposites Obtained by Biomimetic Approach: Characterization and Antibiotic Drug Release, J.Biomed. Mater. Res. B: Appl. Biomater., Vol. 74b, (2005), p. 686-698. |
[217] | M.H. Santos, M. Oliveira, L. Palhares de Freitas, H.S. Mansur, W.L. Vasconcelos, Synthesis control and characterisation of hydroxyapatite prepared by wet precipitation process, Mater. Res., Vol. 7, (2004), p. 625-630. |
[218] | M. Aizawa, H. Ueno, K. Itatani, I. Okada, Synthesis of calcium-deficient apatite fibres by a homogeneous precipitation method and their characterisations, J. European Ceramic Society, Vol. 26, (2006), p. 501-507. |
[219] | G. Bezzi, G. Celotti, E. Landi, T.M.G. L. Torretta, I. Sopyan, A. Tampieri, A Novel Sol-Gel Technique for Hydroxyapatite Preparation, Mater. Chem. Phys., Vol. 78, (2003), p. 816-824. |
[220] | M. H. Fathi, A. Hanifi, Evaluation and characterization of nanostructure hydroxyapatite powder prepared by simple sol-gel method. Mater. Lett., Vol. 61, (2007), p. 3978-3983. |
[221] | P. Luo, T. G. Nieh, Synthesis of ultrafine hydroxyapatite particles by a spray dry method, Mater. Sci. Eng. C, Vol. 3, (1995), p. 75-78. |
[222] | E. Park, R. A. Condrate, D. Lee, Infrared spectral investigation of plasma spray coated hydroxyapatite, Mater. Lett., Vol. 36, (1998), p. 38-43. |
[223] | S. Kannan, J. H. G. Rocha, S. Agathopoulos, J.M.F. Ferreira, Fluorine-substituted hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones, Acta Biomater., Vol. 3, (2007), p. 243-249. |
[224] | J. K. Han, H.Y. Song, F. Saito, B. T. Lee, Synthesis of high purity nano-sized hydroxyapatite powder by microwave-hydrothermal method, Mater. Chem. Phys. Vol. 99, (2006), p. 235-239. |
[225] | G. Guo, Y. Sun, Z. Wang, H. Guo, Preparation of hydroxyapatite nanoparticles by reverse microemulsion. Ceram. Int. Vol. 31, (2005), p. 869-872. |
[226] | K. Itatani, K. Iwafune, F.S. Howell, M. Aizawa, Preparation of various calcium-phosphate powders by ultrasonic spray freeze-drying technique, Mater. Res. Bull., Vol. 35, (2000), p. 575-585. |
[227] | A. J. Khopade, S. Khopade, N. K. Jain, Development of hemoglobin aquasomes from spherical hydroxyapatite cores precipitated in the presence of half-generation poly (amidoamine) dendrimer, Int. J. Pharma., Vol. 241, (2002), p. 145-154. |
[228] | G.H. An, H.J. Wang, B.H. Kim, Y.G. Jeong, Y.H. Choa, Fabrication and characterization of a hydroxyapatite nanopowder by ultrasonic spray pyrolysis with salt-assisted decomposition, Mater. Sci. Eng A, Vol. 821, (2007), p. 449-451. |
[229] | D.K. Pattanayak, R. Dash, R.C. Prasad, B.T. Rao, T.R. Rama Mohan, Synthesis and sintered properties evaluation of calcium phosphate ceramics, Mater. Sci. Eng C, Vol. 27, (2007), p. 684-690. |
[230] | W. Jarudilokkul, V. Tanthapanichakoon, A. Boonamnuayvittaya, Synthesis of hydroxyapatite nanoparticles using an emulsion liquid membrane system, Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol. 296, (2007), p. 149-153. |
[231] | S. Koutsopoulos, Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods, J. Biomed. Mater.Res., Vol. 62, (2002), p. 600-612. |
[232] | Y. Wang, S. Zhang, K. Wei, N. Zhao, J. Chen, X. Wang, Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template, Mater. Lett., Vol. 60, (2006), p. 1484-1487. |
[233] | X. Guo, P. Xiao, Effects of solvents on properties of nanocrystalline hydroxyapatite produced from hydrothermal process, J. Eur. Ceram. Soc., Vol. 26, (2006), p. 3383-3391. |
[234] | G. Meissner, B. Oehme, J. Strackeljan, T. Kocher, In Vitro calculus detection with a moved smart ultrasonic device, J. Clin. Periodontol, Vol. 33, (2006), p. 130-134. |
[235] | P. Laquerriere, A. G. Laquerriere, L. Kilian, A. Beorchia, M. Guenounou, E. Jallot, G. Balossier, P. Frayssinet, Influence of hydroxyaoatite particle characteristics on the[K]/[Na] ratio: a human monocytes in vitro study, Colloids Surf. B: Bio-interfaces, Vol. 33, (2004), p. 39-44. |
[236] | C. Li-Yun, Z. Chuan-bo, H. Jian-feng, Influence of temperature,[Ca2+], Ca/P ratio and ultrasonic power on the crystallinity and morphology of hydroxyapatite, Mater. Lett., Vol. 59, (2005), p. 1902-1906. |
[237] | Hielscher ultrasonics gmbh, copyright 1999-2007. http://www.hielscher.com/ultrasonics/about1.htm |
[238] | K. S. Suslick, Y. Didenko, M.M. Fang, T. Hyeon, K. J. Kolbeck, W. B. McNamara III, M.M. Mdleleni, M. Wong, Acoustic cavitation and its chemical consequences, Phil. Trans. R. Soc. Lond. A, Vol. 357, (1999), p. 335-353. |
[239] | G.E.J. Poinern, R.K. Brundavanam, N. Mondinos, Z.T. Jiang, Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method, Ultrason.Sonochem., Vol. 16, (2009), p. 469-474. |
[240] | P. Q. Ruhe, J. G. C. Wolke, P. H. M. Spauwen, J. A. Jansen, Tissue Engineering: Chapter 9, Calcium Phosphate Ceramics for Bone Tissue Engineering. Edited by J. P. Fisher, A.G. Mikos, J.D. Bronzino, CRC Press, Hoboken, USA, (2007) ISBN: 9781420008333. |
[241] | ASTM C1674 Standard Test Method for Flexural Strength of Advanced Ceramics with Engineered Porosity. http://www.astm.org/Standards/C1674.htm |
[242] | E. Tsuruga, H. Takita, H. Itoh, Y. Wakisaka, Y. Kuboki, Pore size of hydroxyapatite as cell-substratum controls BMP induced osteogenesis, J. Biochem. Vol. 121, (1999), p. 317-324. |
[243] | U. Ripamonti, Smart biomaterials with intrinsic osteoinductivity: Geometric control of bone differentiation. In bone engineering, ed. Davies J.E, EM Squared Incorporation, Toronto, Canada, (2000), p. 215- 222. |
[244] | S. J. Hollister, R. D. Maddox, J. M. Toboas. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials, Vol. 23, No. 20, (2002), p. 4095-4103. |
[245] | S. J. Kalita, S. Bose, H. L. Hosick, A. Bandyopadhyay. Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modelling. Mater. Sci. Eng. C, Vol. 23, No.5, (2003), p. 611-620. |
[246] | G. D. Quinn. Hardness testing of ceramics. Adv. Mater. Process, Vol. 8, (1998), p. 23-27. |
[247] | C. Ullner, A. Germak, H. L. Doussal, R. Morrell, T. Reich and W. Van Dermeulen. Hardness testing on advanced technical ceramics. J. Eur. Ceram. Soc., Vol. 22, (2002), p. 1427-1445. |
[248] | G. E. J. Poinern, R. K. Brundavanam, X. T. Le and D. Fawcett, The mechanical properties of a porous ceramic derived from a 30 nm sized particle based powder of hydroxyapatite for potential hard tissue engineering applications, American Journal of Biomedical Engineering, Vol. 2, No. 6, (2012), p. 278-286. |
[249] | A. K. Khanra, H. C. Jung, S. H. Yu, K. S. Hong, K. S Shin, Microstructure and mechanical properties of Mg–HAP composites, Bull. Mater. Sci., Vol. 33, No.1, (2010), p. 43–47. |
[250] | A. Winkel, R. Meszaros, S. Reinsch, R. Muller, N. Travitzky, T. Fey, P. Greil, L.Wondraczek, Sintering of 3D-Printed Glass/HAp Composites, J. Am. Ceram. Soc., Vol. 95, No.11, (2012), p. 3387–3393. |
[251] | M. Swetha, K. Sahithi, A. Moorthi, N. Srinivasan, K. Ramasamy, N. Selvamurugan. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. International Journal of Biological Macromolecules, Vol. 47, (2010), p. 1-4. |
[252] | L. Pighinelli, M. Kucharska. Chitosan-hydroxyapatite composites. Carbohydr Polym, Vol. 93, No. 1, (2013), p. 256-282. |
[253] | E. M. Rivera-Munoz. Hydroxyapatite-based materials: Synthesis and characterisation, biomedical engineering – Frontiers and Challengers. R. Reza (ed), In Tech Europe, 2011. |
[254] | K. Balani, D. Lahiri, A.K. Keshri, S.T. Bakshi, J.E. Tercero, A. Agarwal. The nano-scratch behaviour of biocompatible hydroxyapatite reinforced with aluminium oxide and carbon nano-tubes. Surfaces for Bio-applications, Vol. 61, (2009), p. 63-66. |
[255] | J. Venkatesan, Z.J. Qian, B.M. Ryu, N.A. Kumar, S.K. Kim. Preparation and characterisation of carbon nano-tubes grafted chitosan natural hydroxyapatite composite for bone tissue engineering. Carbohydr Polym, Vol. 83, (2011), p. 569-577. |