[1] | E. Damien, P.A. Revell, Coralline hydroxyapatite bone substitute: A review of experimental studies and biomedical applications, J. Appl. Biomater. Biomech, Vol. 2, (2004), p. 65-73. |
[2] | D.W. Hutmacher, J.T. Schantz, C.X.F. Lam, K.C. Tan, T.C. Lim, State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective, J. Tissue Eng. Regen. Med. Vol. 1, (2007), p. 245-260. |
[3] | W.J.E.M. Habraken, J.G.C. Wolke, J.A. Jansen, Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering, Adv. Drug Deli. Rev. Vol. 59, (2007), p. 234-248. |
[4] | A. Blom, Which scaffold for which application, Curr. Orthop, Vol. 21, (2007), p. 280-287. |
[5] | P. Habibovic, K. de Groot, Osteoinductive biomaterials- properties and relevance in bone repair, J. Tissue Eng and Regen Med, Vol. 1, (2007), p. 25-32. |
[6] | S.J. Kalita, A. Bhardwaj, H.A. Bhatt, Nanocrystalline calcium phosphate ceramics in biomedical engineering, Mater. Sci. Eng. C, Vol. 27, (2007), p. 441-449. |
[7] | M. Taniguchi, H. Takeyema, I. Mizunna, N. Shinagawa, J. Yura, N. Yoshikawa, H. Aoki, The clinical application of intravenous catheter with percutaneous device made of sintered hydroxyapatite, Jpn. J. Artif. Organs, Vol. 20, (1991), p. 460-464. |
[8] | R.V. Silva, J.A. Camilli, C.A. Bertran, N.H. Moreira, The use of hydroxyapatite and autogenous cancellous bone grafts to repair bone defects in rats, Inter. J. Oral & Maxillofacial Surg., Vol. 34, (2005), p. 178-184. |
[9] | A. Stoch, W. Jastrzebski, E. Dlugon, W. Lejda, B. Trybalska, G.J. Stoch, A. Adamczyk, sol-gel derived hydroxyapatite coatings on titanium and its alloy Ti6Al4V, J. Mol. Struct., Vol. 744, (2005), p. 633-640. |
[10] | Q. M. Jin, H. Takita, T. Kohgo, K. Atsumi, H. Itoh, Y. Kuboki. Effects of geometry of hydroxyapatite as a cell substratum in BMP induced ectopic bone formation. J. Biomed. Mater. Res. A, Vol. 51, No. 3, (2000), p. 491-499. |
[11] | P. Habibovic, H. Yuan, C. M. van der Valk, G. Meijer, C. A. van Blitterwijk, K. De Groot. 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials, Vol. 26, No. 17, (2005), p. 3565-3575. |
[12] | U. Ripamonti, Smart biomaterials with intrinsic osteoinductivity: Geometric control of bone differentiation. In bone engineering, ed. Davies J.E, EM Squared Incorporation, Toronto, Canada, (2000), p. 215- 222. |
[13] | Y. Kuboki, Q. Jin, H. Takita, Geometry of carriers controlling phenotypic expression in BMP induced osteogensis and chondrogensis, J. Bone Joint Surg. Am., Vol. 83, (2001), p. 105-115. |
[14] | ASTM C1674 Standard Test Method for Flexural Strength of Advanced Ceramics with Engineered Porosity.http://www.astm.org/Standards/C1674.htm |
[15] | Y. Kuboki, Q. Jin, and H. Takita, Geometry of carriers controlling phenotypic expression in BMP induced osteogensis and chondrogensis. J. Bone Joint Surg. Am., Vol. 83-A, Suppl. 1, (2001), p. 105-115. |
[16] | U. Ripamonti, Smart biomaterials with intrinsic osteoinductivity: Geometric control of bone differentiation. In bone engineering, ed. Davies J.E, EM Squared Incorporation, Toronto, Canada, (2000), p. 215- 222. |
[17] | S. J. Hollister, R. D. Maddox, J. M. Toboas. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials, Vol. 23, No. 20, (2002), p. 4095-4103. |
[18] | S. J. Kalita, S. Bose, H. L. Hosick, A. Bandyopadhyay. Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modelling. Mater. Sci. Eng. C., Vol. 23, No. 5, (2003), p. 611-620. |
[19] | G.E.J. Poinern, R. Brundavanam, X. Thi Le, S. Djordjevic, M. Prokic and D. Fawcett. Thermal and ultrasonic influence in the formation of nanometer scale hydroxyapatite bio-ceramic. International Journal of Nanomedicine, Vol. 6, (2011), p. 2083-2095. |
[20] | F. Lange. Powder processing science and technology for increasing reliability. J. Am Ceram Soc, Vol. 72, (1989), p. 3-15. |
[21] | K. C. B. Yeong and J. Wang, S. C. Ng. Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4. Biomaterials, Vol. 22, (2001), p. 2705-2712. |
[22] | G. D. Quinn. Hardness testing of ceramics. Adv. Mater. Process, Vol. 8, (1998), p. 23-27. |
[23] | C. Ullner, A. Germak, H. L. Doussal, R. Morrell, T. Reich and W. Van Dermeulen. Hardness testing on advanced technical ceramics. J. Eur. Ceram. Soc., Vol. 22, (2002), p.1427-1445. |
[24] | E. Landi, A. Tampieri, G. Celotti and S. Sprio. Densification behaviour and mechanisms of synthetic hydroxyapatites. Journal of the European Ceramic Society, Vol. 20, (2000), p. 2377-2387. |
[25] | ASTM E384-11e1 Standard test method for Knoop and Vickers Hardness of materials American Society for Testing and Materials International www.astm.org |
[26] | A.E. Tekkaya. An improved relationship between Vickers hardness and yield stress for cold formed materials and its experimental verification. Annal. of the CIRP, Vol. 49, No. 1, (2000), p. 205-208. |
[27] | V.M. Rusu, C.H. Ng, M. Wilke, B. Tiersch, P. Fratzl, M.G. Peter. Size controlled hydroxyapatite nanoparticles as self-organised organic-inorganic composite materials. Biomaterials, Vol. 26, (2005), p. 5414-5426. |
[28] | S.N. Danilchenko, O.G. Kukharenko, C. Moseke, I.Y. Protsenko, L.F. Sukhodub, B. Sulkio-Cleff, Determination of the bone mineral crystallite size and lattice strain from diffraction line broadening. Cryst Res Technol., Vol. 37, No. 11, (2002), p. 1234-1240. |
[29] | H.P. Klug, L.E. Alexander, X-ray diffraction procedures for polycrystallite and amorphous materials. 2nd edition. New York, NY: Wiley, (1974). |
[30] | C.S. Barrett, J.B. Cohen, J. FaberJ, R. Jenkins, D.E. Leyden, J.C. Russ, P.K. Predecki, Advances in X-ray analysis. Vol 29, New York, NY: Plenum Press, (1986). |
[31] | K.C.B. Yeong, J. Wang, S.C. Ng, Mechanochemical synthesis of nanocrystalline hydroxyaptite from CaO and CaHPO4. Biomaterials, Vol. 22, (2001), p. 2705-2712. |