[1] | G. P. Liney, M. Sreenivas, P. Gibbs, R. G. Alvarez, and L. W. Turnbull, “Breast lesion analysis of shape technique: Semiautomated vs. manual morphological description” J. Magnetic Resonance Imaging, vol. 23, pp. 493–498, 2006 |
[2] | W. Chen, L. Giger, U. Brick, “A fuzzy C-Means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR imaging”, Academic Radiology, vol. 13, No.1, pp.63-72, 2006 |
[3] | B. K. Szabo, M. K. Wiberg, B. Bone, P. Aspelin, “Application of artificial neural networks to the analysis of dynamic MR imaging features of the breast”, Eur Radiol, vol. 14, pp. 1217-1225, 2004 |
[4] | L. Liberman, EA. Morris, MJ. Lee, JB. Kaplan, LR. LaTrenta, JH. Menell, AF. Abramson, SM. Dashnaw, DJ. Ballon, DD. Dershaw, “Breast lesions detected on MR Imaging: Features and positive predictive value”, J. American Roentgen Ray Society, vol. 179, pp. 171-178, 2002 |
[5] | L. Arbacha, A. H. Stolpenb, K. S. Berbaum, L. L. Fajardo, J. M. Reinhardt, “Breast MRI lesion classification: Improved performance of human readers with a backpropagation neural network computer- aided diagnosis (CAD) system”, J. Magnetic Resonance Imaging, vol. 25, pp. 89-95, 2007 |
[6] | M. Nirooei, P. Abdolmaleki, A. Tavakoli, M. Gity, “Feature selection and classification of breast cancer on dynamic magnetic resonance imaging using genetic algorithm and artificial neural networks”, J. Electrical systems, vol. 5, 2009 |
[7] | P. Abdolmaleki, L D. Buadu, H. Naderimanesh, “Feature extraction and classification of breast cancer on dynamic magnetic resonance imaging using artificial neural network”, Elsevier, Cancer letters, vol.171, pp.183-191, 2001 |
[8] | R. Lucht, S. Delorme, G. Brix, “Neural network-based segmentation of Dynamic MR mammographic images”, Magnetic Resonance Imaging, vol. 20, pp. 147-154, 2002 |
[9] | D. Newel, K. Nie, J-H. Chen, C-C. Hsu, H-J. Yu, O. Nalcioglu, M-Y. Su, “ Selection of diagnostic features on breast MRI to differentiate between malignant and benign lesions using computer-aided diagnosis: difference in lesions presenting as mass and non-mass-like enhancement, vol.20, No. 4, pp. 771-781, 2009 |
[10] | Gibbs P, Turnbull LW “Textural analysis of contrast-enhanced MR images of the breast”, Magn Reson Med 50:92–98. doi:10.1002/mrm.10496, 2003 |
[11] | Haralick RM, Shanmugam K, Dinstein I (1973) Texture features for image classification. IEEE Trans SMC 3:610– 621. doi:10.1109/TSMC.1973.4309314 |
[12] | S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd edition, 1999 |
[13] | E. Al-Daoud, “A comparison between three neural network models for classification problems”, Journal of artificial intelligence, vol. 2, pp. 56-64, 2009 |
[14] | K. Z. Mao, K. C. Tan, and W. Ser, “Probabilistic Neural-Network Structure Determination for Pattern Classification”, IEEE Trans on NEURAL NETWORKS, vol. 11, No. 4, pp. 1009-1016, 2000 |
[15] | T. Niwa, “Using general regression and probabilistic neural networks to predict human intestinal absorption with topological descriptors derived from two-dimensional chemical structures”, J. Chem. Inf. Comput. Sci, Vol. 43, pp. 113-119, 2003 |
[16] | M. Y. Mashor, S. Esugasini, N.A. Mat Isa and N.H. Othman, “Classification of Breast Lesions Using Artificial Neural Network”, IFMBE Proceedings 15, pp. 45-49, 2007 |
[17] | Haykin, S.: Redes Neurais: Princ´ ıpios e Pr´ atica, 2nd edn. Bookman, Porto Alegre, 2001 |
[18] | Burges, C. J. C.: A Tutorial on Support Vector Machines for Pattern Recognition. Kluwer Academic Publishers, Dordrecht 1998. |
[19] | Leonardo de Oliveira Martins, Erick Corrˆ ea da Silva1, Arist´ ofanes Corrˆ ea Silva1, Anselmo Cardoso de Paiva, and Marcelo Gattass, “Classification of Breast Masses in Mammogram Images Using Ripley’s K Function and Support Vector Machine”, Machine Learning and Data Mining in Pattern Recognition, Lecture Notes in Computer Science, Volume 4571, pp. 784-794, 2007 |
[20] | T. S. Subashini, V. Ramalingam, S. Palanivel, “Breast mass classification based on cytological patterns using RBFNN and SVM”, Expert Systems with Applications, Vol. 36, pp. 5284–5290, 2009 |
[21] | Y. Ireaneus Anna Rejani, Dr. S. Thamarai Selvi, “EARLY DETECTION OF BREAST CANCER USING SVM CLASSIFIER TECHNIQUE”, International Journal on Computer Science and Engineering Vol.1 (3), pp. 127-130, 2009 |
[22] | Ron Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection”, International Joint Conference on Artificial Intelligence (IJCAI), 1995 |