American Journal of Biomedical Engineering
p-ISSN: 2163-1050 e-ISSN: 2163-1077
2011; 1(1): 13-19
doi: 10.5923/j.ajbe.20110101.03
A. Negahi Shirazi 1, M. Imani 2, S. Sharifi 2
1Biomedical Engineering Department, Amirkabir University of Technology, Tehran, 15875/4413, Iran
2Novel Drug Delivery Systems Department, Iran Polymer and Petrochemical Institute, Tehran, 14965/115, Iran
Correspondence to: M. Imani , Novel Drug Delivery Systems Department, Iran Polymer and Petrochemical Institute, Tehran, 14965/115, Iran.
Email: |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
Synthesis, characterization and cytotoxicity evaluation of copolymers based on polyethylene glycol monmethyl ether-g-poly(methacrylic acid-co-methyl methacrylate) are reported via a polymeric precursor method. Grafting was accomplished based on direct condensation reaction in the presence of dicyclohexylcarbodiimide as an esterification-promoting agent catalyzed by dimethylamino pyridine. Polyethylene glycol grafted copolymers were characterized using various spectroscopic techniques; in addition, their biocompatibility was studied. Manifestation of bands assigned to the ester functional groups in Fourier transform infrared spectra and nuclear magnetic resonance was employed for structural characterization of the grafted copolymers. Performance of grafting reaction was guaranteed by determination of grafting efficacy. Cytotoxicity evaluations of the grafted copolymer using L929 fibroblast cell line elucidated acceptable biocompatibility profile; consequently, the applicability of the copolymers is confirmed for biomedical applications.
Keywords: Graft Copolymers, Esterification, Biocompatibility, Biological Applications of Polymers, Polycondenstion
Cite this paper: A. Negahi Shirazi , M. Imani , S. Sharifi , "Direct Condensation Reaction for Grafting of Polyethylene Glycol Monomethyl Ether on Poly(Methacrylic Acid-co-Methyl Methacrylate) for Application in Biomedical Engineering", American Journal of Biomedical Engineering, Vol. 1 No. 1, 2011, pp. 13-19. doi: 10.5923/j.ajbe.20110101.03.
(1) |
(2) |
Figure 1. The Proposed Scheme for Grafting Reaction Mechanism. |
Figure 2. FTIR Spectra of the Initial MA-co-MMA Copolymer (A) and Grafted Copolymer Using Mpeg of 350 (B) And 750 g.mol-1 (C) Nominal Molecular Weights in 10 (- ), 20 ( -) and 30% (-) Feed Ratio. |
Figure 3. 1HNMR Spectra of MA-co-MMA Along With the Corresponding Grafted Materials. |
Figure 4. Grafting Efficiency for Different Compositions Versus Reaction Time. |
Figure 5. Cell Morphology of L929 Fibroblasts After Seven Days Culturing on (A) TCPS Plate and (B) 20P750 Copolymer. |
|
[1] | Shafranska O, Kokott A, Sulthaus D, Ziegler G, Effect of surface modification of polymer beads on the mechanical properties of acrylic bone cement. J Biomater Sci Polym Ed 2007; 18: 439-451, doi:10.1163/156856207780425040 |
[2] | Behniafar H, Haghighat S, Farzaneh S, Direct synthesis of soluble and thermally stable poly(urethane-imide)s from a new triimide-dicarbonylazide. Polymer 2005; 46: 4627-4634, doi:10.1016/j.polymer.2005.03.067 |
[3] | Balakrishnan B, Kumar DS, Yoshida Y, Jayakrishnan A, Chemical modification of poly(vinyl chloride) resin using poly(ethylene glycol) to improve blood compatibility. Biomaterials 2005; 26: 3495-3502, doi:10.1016/j.biomaterials.2004.09.032 |
[4] | Goddard J M, Hotchkiss JH, Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci 2007; 32: 698-725, doi:10.1016/j.progpolymsci.2007.04.002 |
[5] | Ma Z, Mao Z, Gao C, Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloid Surface B 2007; 60: 137-157, doi:10.1016/j.colsurfb.2007.06.019 |
[6] | Wang P, Tan KL, Kang ET, Surface modification of poly (tetrafluoroethylene) films via grafting of poly(ethylene glycol) for reduction in protein adsorption. J Biomater Sci Polym Ed 2000; 11(2): 169-186, doi:10.1163/156856200743634 |
[7] | Laia JY, Hsiuec GH, Functional biomedical polymers for corneal regenerative medicine. React Funct Polym 2007; 67: 1284-1291, doi:10.1016/j.reactfunctpolym.2007.07.060 |
[8] | Chen H, Yuan L, Song W, Wu Z, Li D, Biocompatible polymer materials: Role of protein–surface interactions. Prog Polym Sci 2008; 33: 1059-1087, doi:10.1016/j.progpolymsci.2008.07.006 |
[9] | Chu PK, Chen JY, Wang LP, Huang N, Plasma surface modification of biomaterials. Mater Sci Eng 2002; 36: 143-206, doi:10.1016/S0927-796X(02)00004-9 |
[10] | Pappas D, Bujanda A, Demaree JD, Hirvonen JK, Kosik W, Jensen R, et al. Surface modification of polyamide fibers and films using atmospheric plasmas. Surf Coat Tech 2006; 201: 4384-4388, doi:10.1016/j.surfcoat.2006.08.068 |
[11] | Tusek L, Nitschke M, Werner C, Stana-Kleinschek K, Ribitsch V, Surface characterization of NH3 plasma treated polyamide 6 foils. Colloid Surface A 2001; 195: 81-95, doi:10.1016/S0927-7757(01)00831-7 |
[12] | Wei QF, Gao WD, Hou DY, Wang XQ, Surface modification of polymer nanofibres by plasma treatment. Appl Surf Sci 2005; 245: 16-20, doi:10.1016/j.apsusc.2004.10.013 |
[13] | Errifai I, Jama C, Le Bras M, Delobel R, Gengembre L, Mazzah A, et al. Elaboration of a fire retardant coating for polyamide-6 using cold plasma polymerization of a fluorinated acrylate. Surf Coat Tech 2004; 180-181: 297-301, doi:10.1016/j.surfcoat.2003.10.074 |
[14] | Dumitrascu N, Borcia C, Borcia G, Control of the blood-polymer interface by plasma treatment. J Biomed Mater Res B 2008; 87: 364-373, doi:10.1002/jbm.b.31112 |
[15] | Khorasani MT, Mirzadeh H, Irani S, Plasma surface modification of poly (L-lactic acid) and poly (lactic-co-glycolic acid) films for improvement of nerve cells adhesion. Radiat Phys Chem 2008; 77: 280-287, doi:10.1016/j.radphyschem.2007.05.013 |
[16] | Wang DA, Engineering Blood-Contact Biomaterials by “H-Bond Grafting” Surface Modification. Adv Polym Sci 2007; 209: 179-227, doi:10.1007/12_2006_107 |
[17] | Bhattacharyaa A, Misrab BN, Grafting: a versatile means to modify polymers techniques, factors and applications. Prog Polym Sci 2004; 29: 767-814, doi:10.1016/j.progpolymsci.2004.05.002 |
[18] | Uyama Y, Kato K, Ikada Y, Surface modification of polymers by grafting. Adv Polym Sci 1998; 137: 1-39, doi:10.1007/3-540-69685-7_1 |
[19] | Shung AK, Behravesh E, Jo S, Mikos AG, Crosslinking characteristics of and cell adhesion to an injectable poly (propylene fumarate-co-ethylene glycol) hydrogel using a water-soluble crosslinking system. Tissue Eng 2003; 9: 243-254, doi:10.1089/107632703764664710 |
[20] | Taguet A, Ameduri B, Boutevin B, Crosslinking of vinylidene fluoride-containing fluoropolymers. Adv Polym Sci 2005; 184: 127-211, doi:10.1007/b136245 |
[21] | Kadłubowski S, Henke A, Ulański P, Rosiak J, Bromberg A, Hatton TA, Hydrogels of polyvinylpyrrolidone (PVP) and poly (acrylic acid) (PAA) synthesized by photoinduced crosslinking of homopolymers. Polymer 2007; 48:4974-4981, doi:10.1016/j.polymer.2007.06.033 |
[22] | Okpalugo TIT, Ogwu AA, Maguire PD, McLaughlin JAD, Platelet adhesion on silicon modified hydrogenated amorphous carbon films. Biomaterials 2004; 25: 239-245, doi:10.1016/S0142-9612(03)00494-0 |
[23] | Bovicelli P, Antonioletti R, Onori A, Delogu G, Fabbri D, Dettori MA, Regioselective halogenation of biphenyls for preparation of valuable polyhydroxylated biphenyls and diquinones. Tetrahedron 2006; 62: 635-639, doi:10.1016/j.tet.2005.10.009 |
[24] | Lime F, Irgum K, Hydrobromination of residual vinyl groups on divinylbenzene polymer particles followed by atom transfer radical surface graft polymerization. J Polym Sci A 2009; 47: 1259-1265, doi:10.1002/pola.23209 |
[25] | Christie WW, Preparation of ester derivatives of fatty acids for chromatographic analysis. In: Christie WW, Ed. Advances in lipid methodology. Bridgwater: PJ Barnes & Associates, 1993: 69-111 |
[26] | Hinds KD, Protein conjugation, cross-linking, and pegylation. In: Mahato RI, Ed. biomaterials for delivery and targeting of proteins and nucleic acids. New York: CRC Press, 2005: 120-187 |
[27] | Chapman AP, PEGylated antibodies and antibody fragments for improved therapy: a review. Adv Drug Deliver Rev 2002; 54: 531-545, doi:10.1016/S0169-409X(02)00026-1 |
[28] | Pfeifer BA, Burdick JA, Langer R, Formulation and surface modification of poly(ester-anhydride) micro- and nanospheres. Biomaterials 2005; 26: 117-124, doi:10.1016/j.biomaterials.2004.02.015 |
[29] | Asatekin A, Kang S, Elimelech M, Mayes AM, Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft- poly(ethylene oxide) comb copolymer additives. J Membrane Sci 2007; 298: 136-146, doi:10.1016/j.memsci.2007.04.011 |
[30] | Peppas NA, Klier J, Controlled release by using poly (methacrylic acid-g-ethylene glycol) hydrogels. J Control Release 1991; 16: 203-214, doi:10.1016/0168-3659(91)90044-E |
[31] | Ahn JS, Choi HK, Cho CS, A novel mucoadhesive polymer prepared by template polymerization of acrylic acid in the presence of chitosan. Biomaterials 2001; 22: 923-928, doi:10.1016/S0142-9612(00)00256-8 |
[32] | Foss AC, Goto T, Morishita M, Peppas NA, Development of acrylic-based copolymers for oral insulin delivery. Eur J Pharm Biopharm 2004; 57: 163-169, doi:10.1016/S0939-6411(03)00145-0 |
[33] | Serra L, Domenech J, Peppas NA, Drug transport mechanisms and release kinetics from molecularly designed poly (acrylic acid-g-ethylene glycol) hydrogels. Biomaterials 2006; 27: 5440-5451, doi:10.1016/j.biomaterials.2006.06.011 |
[34] | Chiu HC, Hu CH, Chern CS, Preparation and characterization of amphiphilic poly(ethylene glycol) graft copolymers. Polymer J 1999; 31: 535-541, doi:10.1295/polymj.31.535 |
[35] | Chiu HC, Chern CS, Lee CK, Chang HF, Synthesis and characterization of amphiphilic poly(ethylene glycol) graft copolymers and their potential application as drug carriers. Polymer 1998; 39: 1609-1616, doi:10.1016/S0032-3861(97)00436-9 |
[36] | Lee JH, Kopeckova P, Kopecek J, Andrade JD, Surface properties of copolymers of alkyl methacrylates with methoxy(polyethylene oxide) methacrylates and their applications as protein-resistant coatings. Biomaterials 1990; 11: 455-464, doi:10.1016/0142-9612(90)90058-X |
[37] | Bo G, Wesslen B, Wesslen KB, Amphiphilic comb-shaped polymers from poly(ethylene glycol) macromonomers. J Polym Sci A 1992; 30: 1799-1808, doi:10.1002/pola.1992.080300903 |
[38] | Wesslen B, Wesslen KB, Preparation and properties of some water-soluble, comb-shaped, amphiphilic polymers. J Polym Sci A 1989; 27: 3915-3926, doi:10.1002/pola.1989.080271204 |
[39] | Atta AM, Arndt KF, Synthesis and characterization of anionic graft copolymers containing poly(ethylene oxide) grafts. J App Polym Sci 2002; 86: 1138-1148, doi:10.1002/app.11151 |
[40] | Twaik MA, Tahan M, Zilkha A, Grafting of poly(ethylene oxide) on poly(methyl methacrylate) by transesterification. J Polym Sci A 1969; 7: 2469-2480, doi:10.1002/pol.1969.150070901 |
[41] | Thierry A, Skoulios A, Copolymeres greffes: Poly (methacrylate d'alkyl-g-oxyde d'ethylene), 1. Synthese et caracterisation. Die Makromolekulare Chemie 1976; 177: 319-335, doi:10.1002/macp.1976.021770202 |
[42] | Jannasch P, Wesslen B, Synthesis of poly(styrene-g- ethylene oxide) by ethoxylation of amide group containing styrene copolymers. J Polym Sci A 1993; 31, 1519-1529, doi:10.1002/pola.1993.080310622 |
[43] | The United State Pharmacopeia XXV, The National Formulary XX, Rockville, Md., United States Pharmacopeial Convention, Inc., 2002: 2579-2580 |
[44] | Doulabi ASH, Sharifi S, Imani M, Mirzadeh H, Synthesis and characterization of biodegradable in situ forming hydrogels via direct polycondensation of poly (ethylene glycol) and fumaric acid. Iran Polym J 2008; 17: 1-9 |
[45] | Neises B, Steglich W, Esterification of carboxylic acids with dicyclohexylcarbodiimide/4-dimethylaminopyridine: tert-butyl ethyl fumarate. Org Synth 1990; 63: 183-186 |
[46] | Rufino ES, Monteiro EEC, Infrared study on methyl methacrylate-methacrylic acid copolymers and their sodium salts. Polymer 2003; 44: 7189-7198, doi:10.1016/j.polymer.2003.08.041 |