[1] | Van Vleet, T. R and Schnellmann, R. G. (2003). Toxic Nephropathy: Environmental Chemicals, Sem in Nephrol., 23 (5): 500-508. |
[2] | Hendryx, M. (2009). Mortality from heart, respiratory, and kidney disease, Int. Arch. Occup. Environ. Health, 82: 243–249. |
[3] | Naesens, M., Kuypers, D. R. and Sarwal, M. (2009). Calcineurin inhibitor nephrotoxicity. Clin. J. Am. Soc. Nephrol., 4(2): 481–508. |
[4] | Schrier, R. W., Wang, W., Poole, B. and Mitra, A. (2004). Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J. Clin. Invest., 114: 5–14. |
[5] | Arany, I. and Safirstein, R. L. (2003). Cisplatin nephrotoxicity. Semin. Nephrol., 23: 460–464. |
[6] | Verna, L., Whysner, J. and Williams, G. M. (1996). N-nitrosodiethylamine mechanistic data and risk assessment: bioactivation, DNA-adduct formation, mutagenicity, and tumor initiation. Pharmacol. Ther., 71: 57-81. |
[7] | Mahmoud, A. M., Ahmed, R. R., Soliman, H. A. and Salah, M. (2015). Ruta graveolens and its active constituent rutin protect against diethylnitrosamine-induced nephrotoxicity through modulation of oxidative stress. J. Appl. Pharm. Sci., 5: 016-021. |
[8] | Bartech, H., Heathen, E. and Melville, C. (1989). Carcinogenic nitrosamines: free radical aspects of their action. Free Radic. Boil. Med., 7: 637–644. |
[9] | Kim, D., Jeond, S. and Lee, C. (2003): Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food. Chem,. 81: 321-326. |
[10] | Glässer, G., Graefe, E. U., Struck, F., Veit, M. and Gebhardt, R. (2002). Comparison of antioxidative capacities and inhibitory effects on cholesterol biosynthesis of quercetin and potential metabolites. Phytomedicine. 9 (1): 33–40. |
[11] | Maksimovic, Z., Malencic, D. and Kovacevic, N. (2005). Polyphenol contents and antioxidant activity of Maydis stigma extracts. Bioresour Technol., 96 (8): 873–877. |
[12] | Manach, C., Scalbert, A., Morand, C., Rémésy, C. and Jiménez, L. (2004). Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr., 79: 727-747. |
[13] | Moon, Y. J., Wang, X. and Morris, M. E. (2006). Dietary Flavonoids: Effects on Xenobiotic and Carcinogen Metabolism. Toxicol. Vitro, 20: 187-210. |
[14] | Renugadevi, J., and Prabu, S. M. (2010). Quercetin protects against oxidative stress-related renal dysfunction by cadmium in rats. Exp. Toxicol. Pathol., 62:471-481. |
[15] | Vlachodimitropoulou, E., Sharp, P.A. and Naftalin, R. J (2011). Quercetin-iron chelates are transported via glucose transporters. Free Radic. Biol. Med., 50:934–944 |
[16] | Sabarinathan, D., Mahalakshmi, P. A. and Vanisree, J. (2011). Naringenin, a flavanone inhibits the proliferation of cerebrally implanted C6 glioma cells in rats., Chem. Biol. Interact. 189: 26–36. |
[17] | Fang, F., Tang, Y., Gao, Z. and Xu, Q. (2010). A novel regulatory mechanism of naringenin through inhibition of T lymphocyte function in contact hypersensitivity suppression, Biochem. Biophys. Res. Commun., 397: 163–169. |
[18] | Soromou, L. W, Zhang, Z., Li, R., Chen, N., Guo, W., Huo, M., Guan, S., Lu, J. and Deng, X. (2012). Regulation of inflammatory cytokines in lipopolysaccharide-stimulated RAW264.7 murine macrophage by 7-O-methyl-naringenin. Molec., 17: 3574–3585. |
[19] | Jagetia, G. C. and Reddy, T. K. (2005). Modulation of radiation induced alteration in the antioxidant status of mice by naringin. Life Sci., 77: 780–794. |
[20] | Esmaeili, M. A. and Alilou, M. (2014). Naringenin attenuates CCl4-induced hepatic inflammation by the activation of anNrf2-mediated pathway in rats. Clin. Exp. Pharmacol. Physiol., 41: 416–422. |
[21] | Ramprasath, T., Senthamizharasi, M., Vasudevan, V., Sasikumar, S., Yuvaraj, S. and Selvam, G. S. (2014). Naringenin confersprotection against oxidative stress through upregulation of Nrf2 target genes in cardiomyoblast cells. J. Physiol. Biochem., 70: 407–415. |
[22] | de Luján Alvarez, M., Cerliani, J. P., Monti, J., Carnovale, C., Ronco, M.T., Pisani, G., Lugano, M. C and Carrillo, M. C. (2002). The in vivo apoptotic effect of interferon alfa-2b on rat Preneoplastic liver involves Bax protein. Hepatol., 35: 824-833. |
[23] | Zargar, S., Siddiqi, N. J., Ansar, S., Alsulaimani, M. S. and El Ansary, A. K. (2016). Therapeutic role of quercetin on oxidative damage induced by acrylamide in rat brain. Pharm. Biol., 5: 1-5. |
[24] | Roy, S., Ahmed, F., Banerjee, S., and Saha, U. (2016). Naringenin ameliorates streptozotocin-induced diabetic rat renal impairment by downregulation of TGF-β1 and IL-1 via modulation of oxidative stress correlates with decreased apoptotic events. Pharm. Biol., 29:1-12. |
[25] | Fabiny, D. L. and Ertingshausen, G. (1971). Automated reaction-rate method for determination of serum creatinine with the CentrifiChem. Clin. Chem., 17: 696-700 |
[26] | Tabacco, A., Meiattini, F., Moda, E. and Tarli, P. (1979). Simplified enzymic/colorimetric serum urea nitrogen determination. Clinic. Chem., 25: 336-337. |
[27] | Fossati, P., Prencipe, L. and Berti, G. (1980). Use of 3, 5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin. Chem., 26: 227–231. |
[28] | Yagi, K., (1987). Lipid peroxides and human disease. Chem. Phys. Lipids., 45:337-351. |
[29] | Montgomery, H. A .C and Dymock, J. F. (1961). The determination of nitrite in water. Analyst. 86:414-416. |
[30] | Beutler, E. O. and Kelly, B. M. (1963). Improved method for the determination of blood glutathione. J. Lab. Clin. Med., 61:882-888. |
[31] | Matkovics, B., Kotorman, M., Varga, I. S., Hai, D. Q. and Varga, C. (1998). Oxidative stress in experimental diabetes induced by streptozotocin. Acta. Physiol. Hung. 85:29-38. |
[32] | Marklund, S. and Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and convenient assay for superoxide dismutase. Eur. J. Biochem., 47: 469-474. |
[33] | Cohen, G., Dembiec, D. and Marcus, J. (1970). Measurement of catalase activity in tissue. Anal.Biochem., 34:30-38. |
[34] | Mannervik, B. and Gutenberg, C. (1981). Glutathione transferase (Human placenta). Meth. Enzymol., 77:231-235. |
[35] | Banchroft, J. D., Stevens, A. and Turner, D. R. (1996). Theory and practice of histological techniques. Fourth Ed. Churchillivingstone, New York, London, San Francisco, Tokyo, 766 p. |
[36] | IBM Crop. (2011). IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Crop. |
[37] | Kakihara, T., Imai, C., Hotta, H., Ikarashi, Y., Tanaka, A. and Uchiyama, M. (2003). Impaired tubular excretory function as a late renal side effect of chemotherapy in children. J. Pediatr. Hematol. Oncol., 25: 209-214. |
[38] | Lock, E. A. and Reed, C. J. (1998). Xenobiotic metabolizing enzymes of the kidney, J. Toxicol. Pathol., 26: 18–25. |
[39] | Adejuwon, A. A. and Adokiye, S. B. (2008). Protective effect of the aqueous leaf and seed extract of phyllanthusamaruson gentamicin and acetaminophen-induced nephrotoxic rats. J. Ethnopharmacol., 118:318-23. |
[40] | Nenad, S., Dragan, M., Slavimir, V. (2008). Glomerular basement membrane alterations induced by gentamicin administration in rats. Exp.Toxicol. Pathol, 60: 69-75. |
[41] | Stevens, L. A. and Levey, A. S. (2005). Measurement of kidney function. Med. Clin. North. Am., 89: 457-473. |
[42] | Obermayr, R. P., Temml, C., Gutjahr, G., Knechtelsdorfer, M., Oberbauer, R. and Klauser-Braun, R. (2008). Elevated uric acid increases the risk for kidney disease. J. Am. Soc. Nephrol., 19 (12):2407–13. |
[43] | Kanda, E., Muneyuki, T., Kanno, Y., Suwa, K. and Nakajima, K. (2015). Uric acid level has a U-shaped association with loss of kidney function in healthy people: A Prospective Cohort Study. Plos One., 6; 10(2):e0118031. |
[44] | Rezaie, A., Fazlara, A., Haghi-Karamolah, M., Zadeh, H. N. and Pashmforosh, M. (2013). Effects of Echinacea purpurea on hepatic and renal toxicity induced by diethylnitrosamine in rats. Jundishapur. J. Nat. Pharm. Prod., 8:60-64. |
[45] | Pashmforoosh, M., Rezaie, A., Haghi-Karamallah, M., Fazlara, A., Shahriari, A. and Najafzadeh, H. (2015). Effects of caffeine on renal toxicity induced by diethylnitrosamine. Zahedan J. Res. Med. Sci., 17:7-9. |
[46] | Ahmed, O. M., Mahmoud, A. M., Abou Zid, S. F. and Saber, N. Y. (2016). Silymarin and hydroethanolic extracts of Silybum marianum leaves and fruits attenuate diethylnitrosamine/phenobarbital-induced nephrotoxicity via their antioxidant and anti-inflammatory actions. Amer. J. Bio., 6(2): 21-29. |
[47] | Behling, E. B., Sendão, M. C., Francescato, H. D., Antunes, L. M., Costa, R. S. and Bianchi, M. L. (2006). Comparative study of multiple dosage of quercetin against cisplatin-induced nephrotoxicity and oxidative stress in rat kidneys. Pharmacol Rep., 58: 526-532. |
[48] | Sanchez-Gonzalez, P. D., Lopez-Hernandez, F. J., Perez-Barriocanal, F., Morales, A. I. and Lopez-Novoa, J. M. (2011). Quercetin reduces cisplatin nephrotoxicity in rats without compromising its anti-tumour activity. Nephrol Dial Transplant., 26:3484-3495. |
[49] | Badarya, O. A., Abdel-Maksoud, S., Ahmed, W. A. and Owieda, G. H. (2005). Naringenin attenuates cisplatin nephrotoxicity in rats. Life Sci. 76: 2125–2135. |
[50] | Hermenean, A., Ardelean, A., Stan, M., Herman, H., Mihali, C. V., Costache, M., Dinischiotu, A. (2013). Protective effects of naringenin on carbon tetrachloride-induced acute nephrotoxicity in mouse kidney. Chemico-Biol. Inter. 205,138–147. |
[51] | Vitaglione, P., Morisco, F., Caporaso, N. and Fogliano, V. (2004). Dietary antioxidant compounds and liver health. Crit Rev Food Sci Nutr., 44: 575–586. |
[52] | Ozbek, E. (2012). Induction of oxidative stress in kidney. Int J Nephrol., 2012:465897. |
[53] | Bansal, A. K., Bansal, M., Soni, G. and Bhatnagar, D. (2005). Protective role of Vitamin E pre-treatment on N-nitrosodiethylamine induced oxidative stress in rat liver. Chemico-Biological Interactions, 156: 101-111. |
[54] | Rehman, M. U., Tahir, M., Khan, A. Q., Khan, R., Lateef, A., Oday-O-Hamiza., Qamar, W., and Ali, F., Sultana, S. (2013). Chrysin suppresses renal carcinogenesis via amelioration of hyperproliferation, oxidative stress and inflammation: plausible role of NF-κB. Toxicol Lett., 216(2-3): 146-158. |
[55] | Shaban, N. Z., El-Kersh, M. A., Bader-Eldin, M. M., Kato, S. A. and Hamoda, A. F. (2014). “Effect of Punica Granatum (pomegranate) juice extract on healthy liver and hepatotoxicity induced by diethylnitrosamine and phenobarbital in male rats. J. Med. Food 17 (3): 339-349. |
[56] | Lykkesfeldt, J. (2007). Malondialdehyde as biomarker of oxidative damage to lipids caused by smoking. Clin. Chim. Acta. 380:50-58. |
[57] | Gurel, A., Armutcu, F., Sahin, S., Sogut, S., Ozyurt, H., Gulec, M., Kutlu, N. O. and Akyol, O. (2004). Protective role of alpha-tocopherol and caffeic acid phenethyl ester on ischemia-reperfusion injury via nitric oxide and myeloperoxidase in rat kidneys. Clin Chim Acta., 339 (1–2): 33–41. |
[58] | Begum, Q., Noori, S. and Mahboob, T. (2011). Antioxidant effect of sodium selenite on thioacetamide-induced renal toxicity Pak. J. Biochem. Mol. Biol., 44(1): 21-26. |
[59] | Pracheta, P., Sharma, V., Singh, L., Paliwal, R., Sharma, S., Yadav, S. and Sharma, S. (2011). Chemopreventive effect of hydroethanolic extract of Euphorbia neriifolia leaves against DENA-induced renal carcinogenesis in mice. Asian Pac J Cancer Prev., 12(3): 677-683. |
[60] | Marnett, L. J. (2002). Oxy Radicals, Lipid Peroxidation and DNA Damage. Toxicology 181 (2): 219-222. |
[61] | Lee, I. C., Kim, S. H., Lee, S. M., Baek, H. S, Moon, C., Kim, S. H., Park, S. C., Kim, H. C. and Kim, J. C. (2012). Melatonin attenuatesgentamicin-induced nephrotoxicity and oxidative stress inrats. Arch. Toxicol. 86: 1527–1536. |
[62] | Otunctemur, A., Ozbek, E., Cekmen, M., Cakir, S. S., Dursun, M., Polat, E. C., Somay, A. and Ozbay, N. (2013). Protective effect of montelukast which is cysteinyl-leukotriene receptor antagonist on gentamicin-induced nephrotoxicity andoxidative damage in rat kidney. Ren. Fail. 35: 403–410. |
[63] | Negrette-Guzmán, M., Huerta-Yepez, S., Medina-Campos, O. N., Zatarain-Barrón, Z. L., Hernández-Pando, R., Torres, I., Tapia, E. and Pedraza-Chaverri, J. (2013). Sulforaphane attenuatesgentamicin-induced nephrotoxicity: role of mitochondrialprotection. Evid. Based Complement. Alternat. Med. 2013, 135314. |
[64] | Bishayee, A., Barnes, K. F., Bhatia, D., Darvesh, A. S. and Carroll, R. T. (2010). Resveratrol suppresses oxidative stress and inflammatory response in diethylnitrosamine-initiated rat hepatocarcinogenesis. Cancer Prev Res., 3: 753-763. |
[65] | Zhang, C., Zeng, T., Zhao, X., Yu, L., Zhu, Z. and Xie, K. (2012). Protective Effects of Garlic Oil on Hepatocarcinoma Induced by N-Nitrosodiethylamine in Rats. Int. J. Biol. Sci., 8:363-374. |
[66] | LÓpez-Lázaro, M. (2008). Anticancer and carcinogenic properties of curcumin: Considerations for its clinical development as a cancer chemo preventive and chemotherapeutic agent. Mol.Nut. Food Res., 52: S103 –S127. |
[67] | Chen, B., Ning, M. and Yang, G. (2012). Effect of paeonol on antioxidant and immune regulatory activity in hepatocellular carcinoma rats. Molecules., 17: 4672-4683. |
[68] | Vásquez-Garzón, V. R., Arellanes-Robledo, J., García-Román, R., Aparicio-Rautista, D.I. and Villa-Treviño, S. (2009). Inhibition of reactive oxygen species and pre-neoplastic lesions by quercetin through an antioxidant defense mechanism. Free Radic Res., 43: 128–137. |
[69] | Chirino, Y. I., Hernández-Pando, R., and Pedraza-Chaverrí, J. (2004). Peroxynitrite decomposition catalyst ameliorates renal damage and protein nitration in cisplatin-induced nephrotoxicity in rats. BMC Pharmacol., 4: 20. |
[70] | Usunomena, U., Ademuyiwa, A. J., Tinuade, O. O., Uduenevwo, F. E., Martin, O. and Okolie, N. P. (2012). N-nitrosodimethylamine (NDMA), liver function enzymes, renal function parameters and oxidative stress parameters: A Review. Brit. J. Pharmacol. Toxicol., 3 Suppl4: 165-176. |
[71] | Rao, G. M., Rao, C. V., Pushpangadan, P. and Shirwaikar, A. (2006). Hepatoprotective effects of rubiadin, a major constituent of Rubia cordifolia Linn. J. Ethnopharmacol., 103: 484-490. |
[72] | Wu, G., Fang, Y. Z., Yang, S., Lupton, J. R and Turner, N. D. (2004). Glutathione metabolism and its implications for health. J Nutr., 134:489-492. |
[73] | Blair, I. A. (2006). Endogenous glutathione adducts. Current Drug Metab., 7: 853-872. |
[74] | Franco, R., Schonveld, O. J., Papa, A. and Panayiotidis, M. I. (2007). The central role of glutathione in the pathophysiology of human diseases. Arch. Physiol. Biochem., 113: 234-258. |
[75] | Laurent, A., Perdu-Durand, E., Alary, J., Debrauwer, L. and Cravedi, J. P. (2000). Metabolism of 4-hydroxynonenal, a cytotoxic product of lipid peroxidation in rat precision-cut liver slices. Toxicol. Lett., 114:203-214. |
[76] | Srivastava, A. and Shivanandappa, T. (2010). Hepatoprotective effect of the root extract of Decalepishamiltonii against carbon tetrachloride-induced oxidative stress in rats. Food Chem., 118:411-417. |
[77] | Shaheen, N. E. M. (2013). Oxidative stress of diethylnitrosamine on the functions of kidney in male rats and effective role of rutin and/or selenium. J. Appl. Sci. Res., 9: 6684-6691. |
[78] | Mazen, G. M. A. (2013). The synergistic effects of rutin and urate oxidase on nephrotoxicity in rats. Arab. J. Nucl. Sci. Applic., 46(1): 205-213. |
[79] | Bischoff, S. C. (2008). Quercetin: potentials in the prevention and therapy of disease. Curr Opin. Cli.n Nutr. Metab. Care, 11: 733-740. |
[80] | Ciftci, O., Ozdemir, I., Vardi, N., Beytur, A., and Oguz, F. (2012). Ameliorating effects of quercetin and chrysin on 2,3,7,8-tetrachlorodibenzo- p-dioxin-induced nephrotoxicity in rats. Toxicol. Ind. Health, 28: 947-954. |
[81] | Almaghrabi, O. A. (2015). Molecular and biochemical investigations on the effect of quercetin on oxidative stress induced by cisplatin in rat kidney. Saudi J. Biol. Sci. 22: 227–231. |
[82] | Al-Rejaie, S. S., Abuohashish, H. M., Al-Enazi, M. M., Al-Assaf, A. H., Parmar, M. Y. and Ahmed, M. M. (2013). Protective effect of naringenin on acetic acid-induced ulcerative colitis in rats. World J. Gastroenterol., 19: 5633–5644. |
[83] | Mershiba, S. D., Dassprakash, M. V., and Saraswathy, S. D. (2013). Protective effect of naringenin on hepatic and renaldysfunction and oxidative stress in arsenic intoxicated rats. Mol. Biol. Rep., 40: 3681–3691. |
[84] | Jayaraman, J., Jesudoss, V. A., Menon, V. P. and Namasivayam, N. (2012). Anti-inflammatory role of naringenin in rats with ethanolinduced liver injury. Toxicol. Mech. Methods, 22: 568–576. |
[85] | Annadurai, T., Thomas, P. A., and Geraldine, P. (2013). Ameliorativeeffect of naringenin on hyperglycemia-mediatedinflammation in hepatic and pancreatic tissues of Wistar ratswith streptozotocin- nicotinamide-induced experimentaldiabetes mellitus. Free Radic. Res., 47: 793–803. |
[86] | Fouada, A. A., Albualib, W. H., Zahranc, A., and Gomaad, W., (2014). Protective Effect Of Naringenin Againstgentamicin-Induced Nephrotoxicity In Rats. Enviro. Toxicol. Pharmacol., 38: 420–429. |
[87] | Ahmed, R. R., Mahmoud, A. M., Ashour, M. B. and Kamel, A. M. (2015). Hesperidin protects against diethylnitrosamine-induced nephrotoxicity through modulation of oxidative stress and inflammation. Nat. J. Physiol. Pharma. Pharmacol., 5 (5): 391-397. |
[88] | Ahmed, O. M., Ashour, M. B., Fahim, H. I., Mahmoud, A. M., Ahmed N. A. (2014). Preventive effect of Spirulina versicolor And Enteromorpha flexuosa ethanolic extracts against diethylnitrosamine/benzo(a)pyrene-induced hapatocarcinogencity in rats Journal Of International Academic Research For Multidisciplinary 2 (6): 634-650. |