[1] | M. A Sánchez, S.K. García, P.F. May, L.M.R. Pea, 2001, Evaluation of biological activity of crude extracts from plants used in Yucatecan traditional medicine Part I. Antioxidant, antimicrobial and β-glucosidase inhibitory activities, Phytomedicine 101(7), 633–649. |
[2] | Sir Michael Hirst, 2013, IDF Diabetes atlas (6th ed.), International Diabetes Federation. 2013. p.7. |
[3] | R.R. Singhania, A.K. patel, R.K. Sukumaran, C. Larroche, A. pandey, 2013, Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production, Bioresour Technol. Jan; 127:500-7. |
[4] | J. Krisch, M. Takó, T Papp, C. Vágvölgyi, 2010, Characteristics and potential use of β-glucosidase from zygomycetes, current research, technology and education topics in applied microbiology and microbial biotechnology, 2:892-896. |
[5] | M.O. Salazar and R.L.E Furlan, 2007, A Rapid TLC Autographic Method for the Detection of Glucosidase Inhibitors, Phytochemical Analysis
, 18: 209–212. |
[6] | W.K.S.M. Abeysekera, A. Chandrasekara, Liyanage P.K., 2007, Amylase and glucosidase enzyme inhibitory activity of Ginger (Zingber Roscoe) an in vitro study, Tropical agricultural research, 19:128-135. |
[7] | J. Boustie and M. Grube, 2005, Lichens—a promising source of bioactive secondary metabolites, Plant Genetic Resources, 3(2); 273–287. |
[8] | G. Jothi, and P. Brindha, 2014, Antidiabetic and antihyperlipidemic effect of parmelia perlata.ach. in alloxan induced diabetic rats, International Journal of Pharmacy and Pharmaceutical Sciences, 6(1). |
[9] | M. Wais, I. Nazish, A. Samad, S. Beg, S. Abusufyan, S.A. Ajaj, M. Aqil, 2012, Herbal drugs for diabetic treatment: an updated review of patents, Recent Pat Antiinfect Drug Discovery, 7(1): 53-9. |
[10] | V. Karunaratne, V.M. Thadhani, S.N. Khan, M.I. Choudhary, 2014, Potent α-glucosidase inhibitors from the lichen Cladonia species from Sri Lanka, J. Natn. Sci. Foundation Sri Lanka, 42 (1): 95-98. |
[11] | Y. Zhang, J. Shi, Y. Zhao, C. Haifeng, C. Cao, S. Liu, 2012, An investigation of the anti-diabetic effects of an extract from Cladonia humilis, Pak. J. Pharm. Sci., 25(3), 509-512. |
[12] | S. Rashmi, H. Parizadeh, R.H. Garampalli, 2015, Screening of lichen extracts for in vitro antidiabetic activity using alpha amylase inhibitory assay, International Journal of Biological & Pharmaceutical Research, 6(5): 364-367. |
[13] | C. Coman, O.D. Rugină, C. Socaciu, 2012, Plants and natural compounds with antidiabetic action, Notulae Botanicae Horti Agrobotanici, 40(1): 314-325. |
[14] | N. Verma, B.C. Behera, B.O. Sharma, 2012, Glucosidase inhibitory and radical scavenging properties of lichen metabolites salazinic acid, sekikaic acid and usnic acid, Hacettepe J. Biol. & Chem, 40 (1), 7–21. |
[15] | L.R. Prescrire, 1998, WHO Pharmaceuticals Newsletter, 18(190), 841. |
[16] | B. Groc, 1998, WHO Pharmaceuticals Newsletter, 11(5), 23. |
[17] | P. Wongsa, J. Chaiwarit, A. Zamaludien, 2012, In vitro screening of phenolic compounds, potential inhibition against α-amylase and α-glucosidase of culinary herbs in Thailand, Food Chemistry, 131(3), 964–971. |
[18] | F.M. Afrapoli, B. Asghari, S. Saeidnia, et al., 2012, in vitro α-glucosidase inhibitory activity of phenolic constituents from aerial parts of Polygonum hyrcanicum, DARU Journal of Pharmaceutical Sciences, 20(37). |
[19] | J.M. Landete, J.A. Curiel, H. Rodrıguez, et al., 2008, Study of the inhibitory activity of phenolic compounds found in olive products and their degradation by Lactobacillus plantarum strains, Food Chemistry, 107,320–326. |
[20] | K. Molnar and E. Farkas, 2010, Current Results on Biological Activities of Lichen Secondary Metabolites: a Review, Z.Naturforsch. , 65c, 157–173. |
[21] | Bailey, C. J. and Day, C. 1989. Traditional plant medicines as treatmentfor diabetes. Diabetes Care. 12: 553-564. |
[22] | Notkins, A. L. 2002. Immunolgiz and genetic factors in typical Diabetes. J. Biochem. 227(46): 43545-43548. |
[23] | Malathi V., Santhana D, Revathi K., 2010, Anti diabetic activity by the in vitro alpha amylase and alpha-glucosidase inhibitory activity of catharanthus roseus, The Bioscan, Int.Quarterly J. of Life Sciences, 5(4): 655-659. |
[24] | H. Gao, YN. Huang, B. Gao, P. Li, C. Inagaki, J. Kawabata, Inhibitory effect on α-glucosidase by Adhatoda vasica Nees. Food Chemistry, 108 (2008) 965. |
[25] | A. Mehta, N. Zitzmann, PM. Rudd, TM. Block, RA. Dwek, α-Glucosidase inhibitors as potential broad based anti-viral agents, FEBS Letters, 430 (1998) 17. |
[26] | CA. Simoes-Pires, B. Hmicha, A. Marston, K. Hostettmann, A TLC bioautographic method for the detection of α- β-glucosidase inhibitors in plant extracts, Phytochem. Analysis, 20 (2009) 511. |
[27] | MO. Salazar, RLE. Furlan, 2007, A rapid TLC autographic method for the detection of glucosidase inhibitors, Phytochemical Analysis
Phytochem. Anal. 18: 209–212. |
[28] | BC. Behera, N. Verma, A. Sonone, U. Makhija, 2006, Experimental studies on the growth and usnic acid production in lichen Usnea ghattensis in vitro, Microbiological Research, 161(3): 3. |
[29] | J. Krisch, M. Takó, T Papp, C, Vágvölgyi, 2010, Characteristics and potential use of β-Glucosidase from Zygomycetes, Formatex research center. |
[30] | Bhatia Y, Mishra S, Bisaria VS. Microbial β-Glucosidase: cloning, properties, and applications. Critical Reviews in Biotechnology. 2002; 22:375-407. |