[1] | Mirian EC, Juanita NM, Christophe BO and Estela MC (2013): Molecular mechanisms involved in the protective effect of the chloroform extract of Selaginella lepidophylla (Hook. et Grev.) Spring in a lithiasic rat model. Urolithiasis, 41(3): 205-15. |
[2] | Qian B, Zheng L, Wang Q and Ding G (2015): Correlation between ApoE gene polymorphisms and the occurrence of urolithiasis. Exp. Ther. Med., 9(1): 183-6. |
[3] | Laube N, Berg W, Bernsmann F, Gravius S, Klein F, Latz S, von Mallek D, Porowski T, Randau T, Wasilewska A and Fisang C (2014): Induced urinary crystal formation as an analytical strategy for the prediction and monitoring of urolithiasis and other metabolism-related disorders. EPMA J., 2014: 5-13. |
[4] | Torzewska A, Budzyńska A, Białczak-Kokot M and Różalski A (2014): In vitro studies of epithelium-associated crystallization caused by uropathogens during urinary calculi development. Microbial Pathogenesis, 71-72: 25-31. |
[5] | Mandavia DR, Patel MK, Patel JC, Anovadiya AP, Baxi SN and Tripathi CR (2013): Anti-urolithiatic effect of ethanolic extract of pedalium murex linn. Fruits on ethylene glycol-induced renal calculi. Urol. J., 10(3): 946-52. |
[6] | Selvam R (2002): Calcium oxalate stone disease: role of lipid peroxidation and antioxidants. Urol. Res., 30(1): 35-47. |
[7] | Verma NK, Patel SS, Saleem TSM, Christina AJM and Chidambaranathan N (2009): Modulatory effect of NONI-Herbal formulation against ethylene glycol induced nephrolithiasis in albino rats. J. Pharma. Sci. Res., 1(3): 83-9. |
[8] | Laminski NA, Meyers AM, Kruger M, Sonnekus MI and Margolius LP (1991): Hyperoxaluria in patients with recurrent calcium oxalate calculi: Dietary and other risk factors. Br. J. Urol., 68(5): 454-8. |
[9] | Yagisawa T, Chandhoke PS and Fan J (1999): Comparison of comprehensive and limited metabolic evaluations in the treatment of patients with recurrent calcium urolithiasis. J. Urol., 161(5): 1449-52. |
[10] | Sasikumar, P.; Gomathi, S.; Anbazhagan, K.; Abhishek, A.; Paul, E.; Vasudevan, V.; Sasikumar, S. and Selvam, G. S. (2014): Recombinant Lactobacillus plantarum expressing and secreting heterologous oxalate decarboxylase prevents renal calcium oxalate stone deposition in experimental rats. J. Biomed. Sci., 21(1), 86. |
[11] | Karadi RV, Gadge NB, Alagawadi KR and Savadi RV (2006): Effect of moringa oleifera Lam. root-wood on ethylene glycol induced urolithiasis in rats. J. Ethnopharmacol., 105(1-2): 306-11. |
[12] | Atmani F, Slimani Y, Mimouni M and Hacht B (2003): Prophylaxis of calcium oxalate stones by Herniaria hirsuta on experimentally induced nephrolithiasis in rats. Br. J. Urol. Int., 92(1): 137-40. |
[13] | Yu SL, Gan XG, Huang JM, Cao Y, Wang YQ, Pan SH, Ma LY, Teng YQ and An RH (2011): Oxalate impairs aminophospholipid translocase activity in renal epithelial cells via oxidative stress: Implications for calcium oxalate urolithiasis. J. Urol., 186(3): 1114-20. |
[14] | Scheid CR, Koul HK, Kennington L, Hill WA, Luber-Narod J, Jonassen J., Honeyman T and Menon M (1995): Oxalate-induced damage to renal tubular cells. Scan. Microsc., 9(4): 1097-105, discussion 1105-7. |
[15] | Khan SR (2005): Hyperoxaluria-induced oxidative stress and antioxidants for renal protection. Urol. Res., 33(5): 349-57. |
[16] | Thamilselvan S, Hackett RL and Khan SR (1997): Lipid peroxidation in ethylene glycol induced hyperoxaluria and calcium oxalate nephrolithiasis. J. Urol., 157(3): 1059-63. |
[17] | Brzica H, Breljak D, Burckhardt BC, Burckhardt G and Sabolic I (2013): Oxalate: from the environment to kidney stones. Arh. Hig. Rada. Toksikol., 64(4): 609-30. |
[18] | Naghii MR, Mofid M, Hedayati M and Khalagi K (2014): Antioxidants inhibition of high plasma androgenic markers in the pathogenesis of ethylene glycol (EG)-induced nephrolithiasis in Wistar rats. Urolithiasis, 42(2): 97-103. |
[19] | Lee, J. H.; Yehl, M.; Ahn, K. S.; Kim, S. H. and Lieske, J. C. (2009): 1,2,3,4,6-penta-O-galloyl-beta-D-glucose attenuates renal cell migration, hyaluronan expression, and crystal adhesion. Eur. J. Pharmacol., 606(1-3): 32-7. |
[20] | Kim HB, Shanu A, Wood S, Parry SN, Collet M, McMahon A and Witting PK (2011): Phenolic antioxidants tertbutyl-bisphenol and vitamin E decrease oxidative stress and enhance vascular function in an animal model of rhabdomyolysis yet do not improve acute renal dysfunction. Free Rad. Res., 45(9): 1000-12. |
[21] | Lee HJ, Jeong SJ, Park MN, Linnes M, Han HJ, Kim JH, Lieske JC and Kim SH (2012): Gallotannin suppresses calcium oxalate crystal binding and oxalate-induced oxidative stress in renal epithelial cells. Biol. Pharma. Bulletin, 35(4): 539-44. |
[22] | Rodrigues KF, Costa GL, Carvalho MP and Epifanio RA (2005): Evaluation of extracts produced by some tropical fungi as potential cholinesterase inhibitors. World J. Microbiol. Biotechnol., 21(8-9): 1617-21. |
[23] | Arora DS and Chandra P (2010): Assay of antioxidant potential of two Aspergillus isolates by different methods under various physio-chemical conditions. Braz. J. Microbiol., 41(3): 465-77. |
[24] | Smolskaitė L, Venskutonis PR and Talou T (2015): Comprehensive evaluation of antioxidant and antimicrobial properties of different mushroom species. Food Sci., Technol., 60(1): 462-71. |
[25] | Gordon M, Bihari B, Goosby E, Gorter R, Greco M, Guralnik M, Mimura T, Rudinicki V, Wong R and Kaneko Y (1998): A placebo controlled trial of the immune modulator, lentinan, in HIV-positive patients: A phase I/II trial. J. Med., 29(5-6): 305-30. |
[26] | Wasser SP and Weis AL (1999): Therapeutic effects of substances occurring in higher basidiomycetes mushrooms: A modern perspective. Crit. Rev. Immunol., 19(1): 65-96. |
[27] | Lakhanpal TN and Rana M (2005): Medicinal and nutraceutical genetic resources of mushrooms. Plant Gene. Resource: Characterization and Utilization, 3(2): 288-303. |
[28] | Katya K, Yun YH, Park G, Lee JY, Yoo G and Bai SC (2014): Evaluation of the efficacy of fermented by-product of mushroom, Pleurotus ostreatus, as a fish meal replacer in juvenile amur catfish, Silurus asotus: effects on growth, serological characteristics and immune responses. Asian Australas. J. Anim. Sci., 27(10): 1478-86. |
[29] | Foulongne-Oriol M, Navarro P, Spataro C, Ferrer N and Savoie JM (2014): Deciphering the ability of Agaricus bisporus var. burnettii to produce mushrooms at high temperature (25°C). Fungal Genet. Biol., 73: 1-11. |
[30] | He J-Z, Ru Q –M, Dong D–D and Sun P–L (2012): Chemical characteristics and antioxidant properties of crude water soluble polysaccharides from four common edible mushrooms. Mol., 17(4): 4373-87. |
[31] | Yue, T. L.; Cheng, H. Y.; Lysko, P. G.; McKenna, P. J.; Feuerstein, R.; Gu, J. L.; Lysko, K. A.; Davis, L. L. and Feuerstein, G. (1992): Carvedilol, a new vasodilator and beta adrenoceptor antagonist, is an antioxidant and free radical scavenger. J. Pharmacol. Exp. Ther., 263(1): 92-8. |
[32] | Oliveira, P. J.; Bjork, J. A.; Santos, M. S.; Leino, R. L.; Froberg, M. K.; Moreno, A. J. and Wallace, K. B. (2004): Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity. Toxicol. Appl. Pharmacol., 200(2): 159-68. |
[33] | De Araújo Júnior RF, Souza TO, de Medeiros CA, de Souza LB, Freitas M de L, de Lucena HF, do Socorro Costa Feitosa Alves M and de Araújo AA (2013): Carvedilol decrease IL-1β and TNF-α, inhibits MMP-2, MMP-9, COX-2, and RANKL expression, and up-regulates OPG in a rat model of periodontitis. PLoS ONE, 8(7), e66391. |
[34] | Singh D, Chander V and Chopra K (2003): Carvedilol, an antihypertensive drug with antioxidant properties, protects against glycerol-induced acute renal failure. Am. J. Nephrol., 23(6): 415-21. |
[35] | Canadian Council on Animal Care (1998): CCAC guidelines on: choosing an appropriate endpoint in experiments using animals for research, teaching and testing. (pp. 33). Canada: Ottawa, ON. |
[36] | El Bohi KM, Hashimoto Y, Muzandu K, Ikenaka Y, Ibrahim ZS, Kazusaka A, Fujita S and Ishizuka M (2009): Protective effect of Pleurotus cornucopiae mushroom extract on carbon tetrachloride-induced hepatotoxicity. Jap. J. Vet. Res., 57(2): 109-18. |
[37] | Yamac M, Kanbak G, Zeytinoglu M, Senturk H, Bayramoglu G, Dokumacioglu A and Griensven van LJ (2010): Pancreas protective effect of button mushroom Agaricus bisporus (J. E. Lange) imbach (Agaricomycetidae) extract on rats with streptozotocin-induced diabetes. Int. J. Med. Mush., 12(4): 379-89. |
[38] | Arozal W, Watanabe K, Veeraveedu PT, Ma M, Thandavarayan RA, Sukumaran V, Suzuki K, Kodama M and Aizawa Y (2010): Protective effect of carvedilol on daunorubicin-induced cardiotoxicity and nephrotoxicity in rats. Toxicol., 274(1-3): 18-26. |
[39] | Khan SR (1997): Animal models of kidney stone formation: an analysis. World J. Urol., 15(4): 236-43. |
[40] | Huang HS, Ma MC, Chen J and Chen CF (2002): Changes in the oxidant–antioxidant balance in the kidney of rats with nephrolithiasis induced by ethylene glycol. J. Urol., 167(6): 2584-93. |
[41] | Young DS (2000): Effects of Drugs on Clinical Laboratory Tests. 5th ed. American Association for Clinical Chemistry Press, Washington, DC. |
[42] | Tietz NW (1976): Fundamentals of Clinical Chemistry. 2nd ed. Saunders, Philadelphia, 876. |
[43] | Trinder P (1951): A rapid method for the determination of sodium in serum. Analyst, 76: 596-9. |
[44] | Gindler EM and King JD (1972): Rapid colorimetric determination of calcium in biologic fluids with methylthymol blue. Am. J. Clin. Pathol., 58(4): 376-82. |
[45] | El-Merzabani, M. M.; El-Aaser, A. A. and Zakhary, N. I. (1977): A new method for determination of inorganic phosphorus in serum without deproteinization. J. Clin. Chem. Clin. Biochem., 15(12): 715-8. |
[46] | Mann CK and Yoe JH (1957): Spectrophotometric determination of magnesium with1-azo-2-hydroxy-3-(2.4-dimethylcarboxanilido)-naphtha-lene-1-(2-hydroxybenzene). Anal. Chim. Acta, 16: 155-60. |
[47] | Belfield A and Goldberg DM (1971): Revised assay for serum phenyl phosphatase activity using 4-aminoantipyrine. Enzyme, 12: 561-73. |
[48] | ] Murray RL (1984a): Alanine aminotransferase. In: Kaplan, A. et al. (Eds), Clinical Chemistry. Mosby Co. C. V., St Louis, Toronto, Princeton: 1088-90. |
[49] | Murray RL (1984b): Aspartate aminotransferase. In: Kaplan, A. et al. (Eds), Clinical Chemistry. Mosby Co. C. V., St Louis, Toronto, Princeton: 1112-6. |
[50] | Montgomery HAC and Dymock JF (1962): The rapid determination of nitrite in fresh and saline waters. Analyst, 87: 374-8. |
[51] | Preuss HG, Jarrell ST, Scheckenobach R, Liberman S and Anderson RA (1998): Comparative effects of chromium, vanadium and Gymnema sylvestre on sugar-induced blood pressure elevations in SHR. J. Am. Coll. Nut., 17(2): 116-23. |
[52] | Beutler E, Duron O and Kelly BM (1963): Improved method for the determination of blood glutathione. J. Lab. Clin. Med., 61: 882-8. |
[53] | Mannervik B and Gutenberg C (1981): Glutathione transferase (human placenta). Meth. Enzymol. 77: 231-5. |
[54] | Marklund S and Marklund G (1974): Involvement of the superoxide anion radical in the auto-oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 47(3): 469-74. |
[55] | Matkovics B, Kotorman M, Varga IS, Hai DQ and Varga C (1997): Oxidative stress in experimental diabetes induced by streptozotocin. Acta Physiol. Hung., 85(1): 29-38. |
[56] | Cohen G, Dembiec D and Marcus J (1970): Measurement of catalase activity in tissue extracts. Anal. Biochem., 34: 30-8. |
[57] | PC-STAT (1985): One-way analysis of variance. Version IA (C) copyright. The University of Georgia. Programs coded by Roa, M.; Blane, K. and Zonneberg, M. University of Georgia, USA. |
[58] | Junnila M, Rahko T, Sukura A and Lindberg LA (2000): Reduction of carbon tetrachloride-induced hepatotoxic effects by oral administration of betaine in male Han-Wistar rats: a morphometric histological study. Vet. Pathol., 37(3):231-8. |
[59] | Yokogawa K, Watanabe M, Takeshita H, Nomura M, Mano Y and Miyamoto K (2004): Serum aminotransferase activity as a predictor of clearance of drugs metabolized by CYP isoforms in rats with acute hepatic failure induced by carbon tetrachloride. Int. J. Pharma., 269(2): 479-89. |
[60] | Ezeuko VC, Nwokocha CR, Mounmbegna PE and Nriagu CC (2007): Effects of Zingiber officinale on liver function of mercuric chloride-induced hepatotoxicity in adult Wistar rats. Electron. J. Biomed., 3: 40-5. |
[61] | De Water R, Noordermeer C, van der Kwast TH, Nizze H, Boevé ER, Kok DJ and Schröder FH (1999): Calcium oxalate nephrolithiasis: effect of renal crystal deposition on the cellular composition of the renal interstitium. Am. J. Kid. Dis., 33(4): 761-71. |
[62] | Rashed T, Menon M and Thamilselvan S (2004): Molecular mechanism of oxalate-induced free radical production and glutathione redox imbalance in renal epithelial cells: effect of antioxidants. Am. J. Nephrol., 24(5): 557-68. |
[63] | Jonassen JA, Cao LC, Honeyman T and Scheid CR (2003): Mechanisms mediating oxalate–induced alterations in renal cell functions. Crit. Rev. Eukaryot. Gene Exp., 13(1): 55-72. |
[64] | Wang J, Zhang Q, Jin W, Niu X and Zhang H (2011): Effects and mechanism of low molecular weight fucoidan in mitigating the peroxidative and renal damage induced by adenine. Carb. Polym., 84(1): 417-23. |
[65] | Gupta SK, Baghel MS, Bhuyan C, Ravishankar B, Ashok BK and Patil PD (2012): Evaluation of anti-urolithiatic activity of Pashanabhedadi Ghrita against experimentally induced renal calculi in rats. Ayu., 33(3): 429-34. |
[66] | Jagannath N, Chikkannasetty SS, Govindadas D and Devasankaraiah G (2012): Study of antiurolithiatic activity of Asparagus racemosus on albino rats. Ind. J. Pharmacol., 44(5): 576-9. |
[67] | Khan A, Khan SR and Gilani AH (2012): Studies on the in vitro and in vivo antiurolithic activity of Holarrhena antidysenterica. Urol. Res., 40(6): 671-81. |
[68] | Saeidi J, Bozorgi H, Zendehdel A and Mehrzad J (2012): Therapeutic effects of aqueous extracts of Petroselinum sativum on ethylene glycol-induced kidney calculi in rats. Urol. J., 9(1): 361-6. |
[69] | Aggarwal D, Kaushal R, Kaur T, Bijarnia RK, Puri S and Singla SK (2014): The most potent antilithiatic agent ameliorating renal dysfunction and oxidative stress from Bergenia ligulata rhizome. J. Ethnopharmacol., 158: 85-93. |
[70] | Shukla, A. B.; Mandavia, D. R.; Barvaliya, M. J.; Baxi, S. N. and Tripathi, C. R. (2014): Evaluation of anti-urolithiatic effect of aqueous extract of Bryophyllum pinnatum (Lam.) leaves using ethylene glycol-induced renal calculi. Avicenna J. Phytomed., 4 (3): 151-9. |
[71] | Noorafshan A, Karbalay-Doust S and Karimi F (2013): Diosmin reduces calcium oxalate deposition and tissue degeneration in nephrolithiasis in rats: a stereological study. Korean J. Urol., 54(4): 252-7. |
[72] | Hosseinzadeh, H.; Khooei, A. R.; Khashayarmanesh, Z. and Motamed-Shariaty, V. (2010): Antiurolithiatic activity of Pinus eldarica medw: fruits aqueous extract in rats. Urol. J., 7(4): 232-7. |
[73] | Xiang M, Zhang S, Lu J, Li L, Hou W, Xie M and Zeng Y (2011): Antilithic effects of extracts from Urtica dentata hand on calcium oxalate urinary stones in rats. J. Huazhong Univ. Sci. Technol. Med. Sci., 31(5): 673-7. |
[74] | Gadge NB and Jalalpure SS (2012): Curative treatment with extracts of Bombax ceiba fruit reduces risk of calcium oxalate urolithiasis in rats. Pharma. Biol., 50(3): 310-7. |
[75] | Bodakhe KS, Namdeo KP, Patra KC Machwal L and Pareta SK (2013): A polyherbal formulation attenuates hyperoxaluria-induced oxidative stress and prevents subsequent deposition of calcium oxalate crystals and renal cell injury in rat kidneys. Chin. J. Nat. Med., 11(5): 466-71. |
[76] | Saha S, Shrivastav PS and Verma RJ (2014): Antioxidative mechanism involved in the preventive efficacy of Bergenia ciliata rhizomes against experimental nephrolithiasis in rats. Pharma. Biol., 52(6): 712-22. |
[77] | Al-Attar AM (2010): Antilithiatic influence of Spirulina on ethylene glycol-induced nephrolithiasis in male rats. Am. J. Biochem. Biotechnol., 6(1): 25-31. |
[78] | Sirag HM (2009): Biochemical and hematological studies for the protective effect of oyster mushroom (Pleurotus ostreatus) against glycerol-induced acute renal failure in rats. J. Biol. Sci., 9(7): 746-52. |
[79] | Kim HY, Yokozawa T, Nakagawa T and Sasaki S (2004): Protective effect of gamma-aminobutyric acid against glycerol-induced acute renal failure in rats. Food Chem. Toxicol., 42(12): 2009-14. |
[80] | Singhi S and Jayashre M (2009): Free water excess is not the main cause for hyponatremia in critically ill children receiving conventional maintenance fluids. Ind. Ped., 46(7): 577-83. |
[81] | Farooq SM, Ebrahim AS, Asokan D, Sakthivel R, Savitha S, Rajesh NG and Varalakshmi P (2005): Credentials of Spirulina diet on stability and flux related properties on the biomineralization process during oxalate mediated renal calcification in rats. Clin. Nut., 24(6): 932-42. |
[82] | Freitas AM, Schor N, and Boim MA (2002): The effect of Phyllanthus niruri on urinary inhibitors of calcium oxalate crystallization and other factors associated with renal stone formation. Br. J. Urol. Int., 89(9): 829-34. |
[83] | Patel PK, Patel MA, Vyas B, Shah DR and Gandhi TR (2012): Antiurolithiatic activity of saponin rich fraction from the fruits of Solanum xanthocarpum Schrad. & Wendl. (Solanaceae) against ethylene glycol induced urolithiasis in rats. J. Ethnopharmacol., 144(1): 160-70. |
[84] | Arneson W and Brickell J (2007): Clinical Chemistry, a Laboratory Perspective. Davis, F. A. Co., Philadelphia. Cited in: Ibrahim, F. Y. and El-Khateeb, A. Y. (2013): Effect of herbal beverages of Foeniculum vulgare and Cymbopogon proximus on inhibition of calcium oxalate renal crystals formation in rats. Ann. Agri. Sci., 58(2): 221-9. |
[85] | Soundararajan P, Mahesh R, Ramesh T and Begum VH (2006): Effect of Aerva lanata on calcium oxalate urolithiasis in rats. Ind. J. Exp. Biol., 44(12): 981-6. |
[86] | Bahuguna YM, Rawat MSM, Juyal V and Gananarajan G (2009): Antilithiatic effect of grains of Eleusine coracana. Saudi Pharma. J., 17: 182-8. |
[87] | Thamilselvan S, Khan SR and Menon M (2003): Oxalate and calcium oxalate mediated free radical toxicity in renal epithelial cells: Effect of antioxidants. Urol. Res., 31(1): 3-9. |
[88] | Scheid CR, Cao LC, Honeyman T and Jonassen JA (2004): How elevated oxalate can promote kidney stone disease: Changes at the surface and in the cytosol of renal cells that promote crystal adherence and growth. Front Biosci., 9: 797-808. |
[89] | Goldfarb S (1994): Diet and nephrolithiasis. Ann. Rev. Med., 45: 235-43. |
[90] | Divakar K, Pawar AT, Chandrasekhar SB, Dighe SB and Divakar G (2010): Protective effect of the hydro-alcoholic extract of Rubia cordifolia roots against ethylene glycol induced urolithiasis in rats. Food Chem. Toxicol., 48(4): 1013-8. |
[91] | De Water R, Noordermeer C, Houtsmuller AB, Nigg AL, Stijnen T, Schröder FH and Kok DJ (2000): Role of macrophages in nephrolithiasis in rats: an analysis of the renal interstitium. Am. J. Kid. Dis., 36(3): 615-25. |
[92] | Khan A, Bashir S, Khan SR and Gilani AH (2011): Antiurolithic activity of Origanum vulgare is mediated through multiple pathways. BMC Complem. Alter. Med., 11(1), 96. |
[93] | Pawar AT, Gaikwad GD, Metkari KS, Tijore KA, Ghodasara JV and Kuchekar BS (2012): Effect of Terminalia chebula fruit extract on ethylene glycol induced urolithiasis in rats. Biomed. Aging Pathol., 2(3): 99-103. |
[94] | Hess B and Kok DJ (1996): Nucleation growth and aggregation of crystals. In: Coe, F. L.; Favus, M. J.; Pak, C. Y.; Parks, J. H. and Preminger, G. M. (Eds), Kidney Stones, Medical and Surgical Management. Lippincott-Raven, Philadelphia, PA, USA: 3-32. |
[95] | Sayana SB, Khanwelkar CC, Nimmagadda VR, Chavan VR, Ramesh BH and Naveen Kumar S (2014): Evaluation of antiurolithic activity of alcoholic extract of roots of Cissampelos Pareira in albino rats. J. Clin. Diagnostic Res., 8(7): HC01-HC04. |
[96] | Tiselius HG (2003): Epidemiology and medical management of stone disease. Br. J. Urol. Int., 91(8): 758-67. |
[97] | Saha S and Verma RJ (2014): Antinephrolithiatic and antioxidative efficacy of Dolichos biflorus seeds in a lithiasic rat model. Pharma. Biol., 22: 1-15. |
[98] | De Oliveira RB, Coelho EB, Rodrigues MR, Costa-Machado AR, de Sousa JP, Berretta AA and Bastos JK (2013): Effect of the Copaifera langsdorffii desf. leaf extract on the ethylene glycol-induced nephrolithiasis in rats. Evidence-based Complem. Alter. Med., 2013: 131372. |
[99] | Ingale KG, Thakurdesai PA and Vyawahare NS (2012): Effect of Hygrophila spinosa in ethylene glycol induced nephrolithiasis in rats. Ind. J. Pharmacol., 44(5): 639-42. |
[100] | Kumar A, Dogra S and Prakash A (2009): Effect of carvedilol on behavioral, mitochondrial dysfunction, and oxidative damage against D-galactose induced senescence in mice. Naunyn Schmiedebergs Arch Pharmacol., 380(5): 431-41. |
[101] | Awad ME, Abdel-Rahman MS and Hassan SA (1998): Acrylamide toxicity in isolated rat hepatocytes. Toxicol. in Vitro, 12(6): 699-704. |
[102] | Sallie R, Tredger JM and Williams R (1991): Drugs and the liver. Part 1: Testing liver function. Biopharma. Drug Dispos., 12(4): 251-9. |
[103] | Veena, C. K.; Josephine, A.; Preetha, S. P and Varalakshmi P (2007): Benifical role of sulfated polysaccharides from edible seaweed Fucus vesiculosus in experimental hyperoxaluria. Food Chem., 100(4): 1552-9. |
[104] | Deepa PR and Varalakshmi P (2003): The cytoprotective role of a low molecular weight heparin fragment studied in an experimental model of glomerulotoxicity. Eur. J. Pharmacol., 478(2-3): 199-205. |
[105] | Thamilselvan, S. and Menon, M. (2005): Vitamin E therapy prevents hyperoxaluria-induced calcium oxalate crystal deposition in the kidney by improving renal tissue antioxidant status. Br. J. Urol. Int., 96(1): 117-26. |
[106] | Sathya M, Kokilavani R, Teepa KS and Balakrishnan A (2011): Biopotency of Acalypha indica linn on membrane bound ATPases and marker enzymes urolithic rats. Anc. Sci. Life, 31(1): 3-9. |
[107] | Pan H, Mukhopadhyay P, Rajesh M, Patel V, Mukhopadhyay B, Gao B, Haskó G and Pacher P (2009): Cannabidiol attenuates cisplatin-induced nephrotoxicity by decreasing oxidative/nitrosative stress, inflammation, and cell death. J. Pharmacol. Exp. Ther., 328(3): 708-14. |
[108] | Chen J, Lei Y, Wu G, Zhang Y, Fu W, Xiong C and Ruan J (2012): Renoprotective potential of Macrothelypteris torresiana via ameliorating oxidative stress and proinflammatory cytokines. J. Ethnopharmacol., 139(1): 207-13. |
[109] | Traylor LA and Mayeux PR (1997): Superoxide generation by renal proximal tubule nitric oxide synthase. Nitric Oxide, 1(5): 432-8. |
[110] | Plotnikov EY, Chupyrkina AA, Pevzner IB, Isaev NK and Zorov DB (2009): Myoglobin causes oxidative stress, increase of NO production and dysfunction of kidney’s mitochondria. Biochimica et Biophysica Acta, 1792(8): 796-803. |
[111] | Celik I and Suzek H (2007): Effects of subacute treatment of ethylene glycol on serum marker enzymes and erythrocyte and tissue antioxidant defense systems and lipid peroxidation in rats. Chem. Biol. Interact., 167(2): 145-52. |
[112] | Shirfule AL, Racharla V, Qadri SS and Khandare AL (2013): Exploring antiurolithic effects of gokshuradi polyherbal ayurvedic formulation in ethylene-glycol-induced urolithic rats. Evid. Based Complem. Alter. Med., 2013, 763720. |
[113] | Abul-Ezz SR, Walker PD and Shah SV (1991): Role of glutathione in an animal model of myoglobinuric acute renal failure. Proceedings of the National Academy of Sci. USA, 88(21): 9833-7. |
[114] | Richard MJ, Arnaud J, Jurkovitz C, Hachache T, Meftahi H, Laporte F, Foret M, Favier A and Cordonnier D (1991): Trace-elements and lipid-peroxidation abnormalities in patients with chronic renal failure. Nephr., 57(1): 10-5. |
[115] | Ozden M, Maral H, Akaydin D, Cetinalp P and Kalender B (2002): Erythrocyte glutathione peroxidase activity, plasma malondialdehyde and erythrocyte glutathione levels in hemodialysis and CAPD patients. Clin. Biochem., 35(4): 269-73. |
[116] | Zwołinska D, Grzeszczak W, Szczepanska M, Kilis-Pstrusinska K and Szprynger K (2006): Lipid peroxidation and antioxidant enzymes in children on maintenance dialysis. Ped. Nephrol., 21(5): 705-10. |
[117] | Sumitra K, Pragasam V, Sakthivel R, Kalaiselvi P and Varalakshmi P (2005): Beneficial effect of vitamin E supplementation on the biochemical and kinetic properties of Tamm–Horsfall glycoprotein in hypertensive and hyperoxaluric patients. Nephrol. Dial. Transpl., 20(7): 1407-15. |
[118] | Hong SH, Lee HJ, Sohn EJ, Ko HS, Shim BS, Ahn KS and Kim SH (2013): Anti-nephrolithic potential of resveratrol via inhibition of ROS, MCP-1, hyaluronan and osteopontin in vitro and in vivo. Pharmacol. Rep., 65(4): 970-9. |
[119] | Yoshida A and Huang IY (1986): Structure of human glucose 6-phosphate dehydrogenase. In: Yoshida, A. and Beutler, E. (Eds), Glucose 6-phosphate dehydrogenase. Acadamic Press, New York: 473-82. |
[120] | Kirkman HN and Gaetani GF (1984): Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH. Proceedings of the National Academy of Sciences USA, 81(14): 4343-7. |
[121] | Pigeolet E, Corbisier P, Houbion A, Lambert D, Michiels C, Raes M, Zachary MD and Remacle J (1990): Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals. Mech. Ageing Dev., 51(3): 283-97. |
[122] | Arivazhagan P, Ramanathan K and Panneerselvam C (2001): Effect of DL-alpha-lipoic acid on the status of lipid peroxidation and antioxidants in mitochondria of aged rats. J. Nut. Biochem., 12(1): 2-6. |
[123] | Bijarnia RK, Kaur T, Aggarwal K, Singla SK and Tandon C (2008): Modulatory effects of N-acetylcysteine on hyperoxaluric manifestations in rat kidney. Food Chem. Toxicol., 46(6): 2274-8. |
[124] | Kosanić M, Ranković B and Dašić M (2012): Mushrooms as possible antioxidant and antimicrobial agents. Iran J. Pharma. Res., 11(4): 1095-102. |
[125] | Kim MY, Seguin P, Ahn JK, Kim JJ, Chun SC, Kim EH, Seo SH, Kang EY, Kim SL, Park YJ, Ro HM and Chung IM (2008): Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J. Agri. Food Chem., 56(16): 7265-70. |
[126] | Tsai S-Y, Huang S-J, Lo S-H, Wu T-P, Lian P-Y and Mau J-L (2009): Flavour components and antioxidant properties of several cultivated mushrooms. Food Chem., 113(2): 578-84. |
[127] | Sarikurkcu C, Tepe B, Semiz DK and Solak MH (2010): Evaluation of metal concentration and antioxidant activity of three edible mushrooms from Mugla, Turkey. Food Chem. Toxicol., 48(5): 1230-3. |
[128] | Palacios I, Lozano M, Moro C, D’Arrigo M, Rostagno MA, Martinez JA, Garcia-Lafuente A, Guillamَn E and Villares A (2011): Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem., 128(3): 674-8. |
[129] | Liu YT, Sun J, Luo ZY, Rao SQ, Su YJ, Xu RR and Yang YJ (2012): Chemical composition of five wild edible mushrooms collected from Southwest China and their antihyperglycemic and antioxidant activity. Food Chem. Toxicol., 50(5): 1238-44. |
[130] | Reis, F. S.; Martins, A.; Barros, L.; Ferreira, I. C. F. (2012): Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: a comparative study between in vivo and in vitro samples. Food Chem. Toxicol., 50(5): 1201-7. |
[131] | Nworu CS, Ihim SA, Ugwu LE, Laiyemo KA and Akah PA (2014): Hepato- and nephroprotective activities of a Nigerian local king tuber oyster mushroom, Pleurotus tuberregium (higher Basidiomycetes), in chemically induced organ toxicities in rats. Int. J. Med. Mush., 16(4): 305-18. |
[132] | Thomas PA, Geraldine P and Jayakumar T (2014): Pleurotus ostreatus, an edible mushroom, enhances glucose 6-phosphate dehydrogenase, ascorbate peroxidase and reduces xanthine dehydrogenase in major organs of aged rats. Pharma. Biol., 52(5): 646-54. |
[133] | Jayakumar T, Thomas PA, Sheu JR and Geraldine P (2011): In-vitro and in-vivo antioxidant effects of the oyster mushroom Pleurotus ostreatus. Food Res. Int., 44(4): 851-61. |
[134] | Falandysz J (2008): Selenium in edible mushrooms. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. , 26(3): 256-99. |
[135] | Liu J, Jia L, Kan J and Jin CH (2013): In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus). Food Chem. Toxicol., 51: 310-6. |
[136] | Vitor RF, Mota-Filipe H, Teixeira G, Borges C, Rodrigues AI, Teixeira A and Paulo A (2004): Flavonoids of an extract of Pterospartum tridentatum showing endothelial protection against oxidative injury. J. Ethnopharmacol., 93(2-3): 363-70. |
[137] | Ratheesh M, Shyni GL, Sindhu G and Helen A (2011): Inhibitory effect of Ruta graveolens L. on oxidative damage, inflammation and aortic pathology in hypercholesteromic rats. Exp. Toxicol. Pathol., 63(3): 285-90. |
[138] | Yasar A, Erdemir F, Parlaktas BS, Atilgan D, Koseoglu RD, Saylan O and Firat F (2013): The effect of carvedilol on serum and tissue oxidative stress parameters in partial ureteral obstruction induced rat model. Kaohsiung J. Med. Sci., 29(1):19-25. |
[139] | Padi SS and Chopra K (2002): Salvage of cyclosporine A-induced oxidative stress and renal dysfunction by carvedilol. Nephr., 92(3): 685-92. |
[140] | Singh D, Chander V and Chopra K (2004): Carvedilol attenuates ischemia-reperfusion-induced oxidative renal injury in rats. Fund. Clin. Pharmacol., 18(6): 627-34. |
[141] | Abdel-Raheem MH, Salim SU, Mosad E, Al-Rifaay A, Salama HS and Hasan-Ali H (2015): Antiapoptotic and antioxidant effects of carvedilol and vitamin E protect against diabetic nephropathy and cardiomyopathy in diabetic Wistar albino rats. Horm. Metab. Res., 47(2): 97-106. |
[142] | Carvalho Rodrigues MA, Rodrigues JL, Martins NM, Barbosa F, Curti C, Santos NAG and Santos AC (2011): Carvedilol protects against cisplatin-induced oxidative stress, redox state unbalance and apoptosis in rat kidney mitochondria. Chem. Biol. Interact., 189(1-2): 45-51. |
[143] | Hamdy N and El-Demerdash E (2012): New therapeutic aspect for carvedilol: antifibrotic effects of carvedilol in chronic carbon tetrachloride-induced liver damage. Toxicol. Appl. Pharmacol., 261(3): 292-9. |