American Journal of Biochemistry
p-ISSN: 2163-3010 e-ISSN: 2163-3029
2012; 2(5): 74-88
doi: 10.5923/j.ajb.20120205.05
Venkanna Bhanothu 1, Jane Theophilus 1, Roya Rozati 2, Prabhakar Badhini 3, Boda Vijayalaxmi 1, Kalyan Reddy P 3
1Dept. of Zoology, UCS, OU, Hyderabad. India
2MHRT Hospital and Research Centre, Road No# 3, Banjara Hills, Hyderabad, India
3Dept of Anthropology, School of Social Sciences, University of Hyderabad, Hyderabad, India
Correspondence to: Venkanna Bhanothu , Dept. of Zoology, UCS, OU, Hyderabad. India.
Email: | ![]() |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
Acute Lung Inflammation & Injury (ALI) is a patho-physiological response to interaction of various factors at biomolecular and cellular level and the physiological condition leading to enhancement of the same in contamined environmental conditions. This review aims to discuss the current status of research done in the area of ALI and unique in that it projects a combination of new simulations, experiments and schemes which were not proposed earlier in targeting the ALI at many areas. Utilization of biomarkers in medicine enhances the capacity to detect and support diagnosis of disease for early prediction and for planning therapeutic alternatives. Novel investigation and innovative understanding at molecular level revealed an abundance of exciting arena of new biomarkers which suggests their use for clinical observations. For the last four decades, the search has continued for useful diagnostic and prognostic biomarkers that can enable and guide critical care physicians to precisely distinguish ALI/ARDS from other disorders and to portend disease progression. Quite a few new molecules as biological markers in acute lung inflammation and injury have had clinical applications. The scope of this exhaustive review is to summarize the current status of some biochemical, cellular, physiological markers and role of environmental factors in acute lung inflammation and injury.
Keywords: Acute Lung Inflammation, Injury (ALI), Acute Respiratory Distress Syndrome (ARDS), Biomarkers
|
|
[1] | Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001: 69; 89–95. |
[2] | Proudfoot AG, McAuley DF, Hind M, Griffiths MJ. Translational research: what does it mean, what has it delivered and what might it deliver? Curr Opin Crit Care 2011; 17:495-503. |
[3] | Manolio T. Novel risk markers and clinical practice. N Engl J Med 2003; 349: 1587-9. |
[4] | Hansell DM, Wells AU. Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Clin Radiol 2003; 58: 573-4. |
[5] | Bouadma L, Luyt CE, Tubach F, Cracco C, Alvarez A, Schwebel C, Schortgen F, Lasocki S, Veber B, Dehoux M, Bernard M, Pasquet B, Regnier B, Brun- Buisson C, Chastre J, Wolff M. Use of procalcitonin to reduce patients' exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet 2010; 375:463-474. |
[6] | Karlsson S, Heikkinen M, Pettila V, Alila S, Vaisanen S, Pulkki K, Kolho E, Ruokonen E. Predictive value of procalcitonin decrease in patients with severe sepsis: a prospective observational study. Crit Care 2010; 14: R205. |
[7] | Luyt CE, Combes A, Trouillet JL, Chastre J. Value of the serum procalcitonin level to guide antimicrobial therapy for patients with ventilator-associated pneumonia. Semin Respir Crit Care Med 2011; 32:181-187. |
[8] | Whitsett J, Bachurski C, Barnes K, Bunn P Jr, Case L, Cook D, Crooks D, Duncan MW, Dwyer-Nield L, Elston RC, et al. Functional genomics of lung disease. Am J Respir Cell Mol Biol 2004; 31: S23–S34. |
[9] | Rubenfeld G D, Caldwell E, Peabody E, Weaver J, Martin D P, Neff M, Stern E J, Hudson L D. Incidence and outcomes of acute lung injury. N Engl J Med 2005; 353: 1685–1693. |
[10] | Frutos-Vivar F, Nin N, Esteban A. Epidemiology of acute lung injury and acute respiratory distress syndrome. Curr Opin Crit Care 2004; 10:1-6. |
[11] | Bhadade RR, de Souza RA, Harde MJ, Khot A. Clinical characteristics and outcomes of patients with acute lung injury and ARDS. J Postgrad Med 2011; 57(4): 286-90. |
[12] | Vigg A, Mantri S. Clinical profile of ARDS. J Assoc Physicians India 2003: 51; 855-8 |
[13] | Bajpai S, Bichile L. Mortality analysis of patients of acute febrile illness during monsoon in a tertiary care hospital of Mumbai. Infect Dis Clin Pract 2008; 16: 294-7. |
[14] | Bonfield TL, Panuska JR, Konstan MW, Hilliard KA, Hilliard JB, Ghnaim H, Berger M. Inflammatory cytokines in cystic fibrosis lungs. Am J Respir Crit Care Med 1995; 152: 2111–2118. |
[15] | Wheeler AP, Bernard GR. Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet 2007; 369:1553–1564. |
[16] | Ashbaugh DG, Bigelow DB, Petty TL, et al. Acute respiratory distress in adults. Lancet 1967; 2:319–323. |
[17] | Gattinoni L, Pesenti A. The concept of “baby lung.” Intensive Care Med 2005; 31: 776–784. |
[18] | Crosby LM, Waters CM. Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol 2010; 298: L715-731. |
[19] | Christie JD, Ma SF, Aplenc R, Li M, Lanken PN, Shah CV, Fuchs B, Albelda SM, Flores C, Garcia JG. Variation in the myosin light chain kinase gene is associated with development of acute lung injury after major trauma. Crit Care Med 2008; 36: 2794-2800. |
[20] | Rocco PR, Zin WA. Pulmonary and extrapulmonary acute respiratory distress syndrome: are they different? Curr Opin Crit Care 2005; 11: 10-17. |
[21] | Strieter RM, Starko KM, Enelow RI, Noth I, Valentine VG. Idiopathic Pulmonary Fibrosis Biomarkers Study Group. Effects of interferon-gamma 1b on biomarker expression in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2004; 170: 133-40. |
[22] | Rothkrantz-Kos S, van Dieijen-Visser MP, Mulder PG, Drent M. Potential usefulness of inflammatory markers to monitor respiratory functional impairment in sarcoidosis. Clin Chem 2003; 49:1510-7. |
[23] | McClintock D, Zhuo H, Wickersham N, Matthay MA, Ware LB. Biomarkers of inflammation, coagulation and fibrinolysis predict mortality in acute lung injury. Crit Care 2008: 12; R41. |
[24] | Impellizzeri D, Esposito E, Mazzon E, Paterniti I, Di Paola R, Bramanti P, Cuzzocrea S. Effect of apocynin, a NADPH oxidase inhibitor, on acute lung inflammation. Biochem Pharmacol 2011: 81(5); 636-48. |
[25] | Ken-ichiro Inoue, Hirohisa Takano, Rie Yanagisawa, Seishiro Hirano, Miho Sakurai, Akinori Shimada, and Toshikazu Yoshikawa. Effects of Airway Exposure to Nanoparticles on Lung Inflammation Induced by Bacterial Endotoxin in Mice. Environ Health Perspect 2006: 114; 1325–1330. |
[26] | Bergmeier W, Wagner DD. Inflammation. In: Michaelson AD, editor. Platelets. Boston: Academic Press, 2007, pp. 713–726. |
[27] | Kayal S, Jais JP, Aguini N, et al. Elevated circulating E-selectin, intercellular adhesion molecule 1, and von Willebrand factor in patients with severe infection. Am J Respir Crit Care Med 1998: 157; 776-84. |
[28] | Sessler CN, Windsor AC, Schwartz M, et al. Circulating ICAM-1 is increased in septic shock. Am J Respir Crit Care Med 1995:151;1420-7 |
[29] | Sokolova E, Reiser G. A novel therapeutic target in various lung diseases: airway proteases and protease-activated receptors. Pharmacol Ther 2007:115; 70–83. |
[30] | Ware LB, Conner ER, Matthay MA. von Willebrand factor antigen is an independent marker of poor outcome in patients with early acute lung injury. Crit Care Med 2001: 29; 2325–2331. |
[31] | Geppetti, P., Materazzi, S., Nicoletti, P. The transient receptor potential vanilloid 1: role in airway inflammation and disease. Eur. J. Pharmacol 2006: 533; 207-214. |
[32] | Uchida T, Shirasawa M, Ware LB, Kojima K, Hata Y, Makita K, Mednick G, Matthay ZA, Matthay MA. Receptor for advanced glycation end-products is a marker of type I cell injury in acute lung injury. Am J Respir Crit Care Med 2006: 173; 1008-1015. |
[33] | Eisner MD, Parsons P, Matthay MA, Ware L, Greene K. Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury. Thorax 2003: 58; 983-988. |
[34] | Nathani N, Perkins GD, Tunnicliffe W, Murphy N, Manji M, Thickett DR. KL-6 is a marker of alveolar inflammation but not infection in patients with ARDS. Crit Care 2008: 12; R12. |
[35] | Sato H, Callister MEJ, Mumby S, Quinlan GJ, Welsh KI, duBois RM, Evans TW. KL-6 levels are elevated in plasma from patients with acute respiratory distress syndrome. Eur Respir J 2004: 23; 142-145. |
[36] | Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet JF, Eisner MD, Matthay MA. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med 2002: 346; 1281-1286. |
[37] | Phillips CR, Chesnutt MS, Smith SM. Extravascular lung water in sepsis-associated acute respiratory distress syndrome: indexing with predicted body weight improves correlation with severity of illness and survival. Crit Care Med 2008: 36; 69–73. |
[38] | Mauri T, Coppadoro A, Bellani G, Bombino M, Patroniti N, et al. Pentraxin 3 in acute respiratory distress syndrome: an early marker of severity. Crit Care Med 2008: 36; 2302–8. |
[39] | He X, Han B, Liu M. Long pentraxin 3 in pulmonary infection and acute lung injury. Am J Physiol Lung Cell Mol Physiol 2007: 292; L1039–L1049. |
[40] | Okutani D, Han B, Mura M, Waddell TK, Keshavjee S, Liu M. High-volume ventilation induces pentraxin 3 expression in multiple acute lung injury models in rats. Am J Physiol Lung Cell Mol Physiol 2007: 292; L144–L153. |
[41] | Martin GS, Eaton S, Mealer M, Moss M. Extravascular lung water in patients with severe sepsis: a prospective cohort study. Crit Care 2005: 9; R74–R82. |
[42] | Morris DG, Huang X, Kaminski N, Wang Y, Shapiro SD, Dolganov G, Glick A, Sheppard D. Loss of integrin alpha (v) beta6-mediated TGF-beta activation causes Mmp12-dependent emphysema. Nature 2003: 422; 169-73. |
[43] | Adam Anas, Tom van der Poll, Alex F de Vos. Role of CD14 in lung inflammation and infection. Crit Care 2010: 14(2); 209. |
[44] | Schubert K, Polte T, Bönisch U, Schader S, Holtappels R, Hildebrandt G, Lehmann J, Simon JC, Anderegg U, Saalbach A. Thy-1 (CD90) regulates the extravasation of leukocytes during inflammation.Eur J Immunol 2011: 41(3);645-56. |
[45] | Knottnerus JA, van Weel C, Muris JW. Evaluation of diagnostic procedures. BMJ 2002: 324; 477-80. |
[46] | V. Reynders, S. Loitsch, C. Steinhauer, T. Wagner, D. Steinhilber, and J. Bargon. Peroxisome proliferator-activated receptor α (PPARα) down-regulation in cystic fibrosis lymphocytes. Respiratory Research 2006: 7; 104. |
[47] | R. Arnold and W. K¨onig. Peroxisome-proliferator-activated receptor-γ agonists inhibit the release of proinflammatory cytokines from RSV-infected epithelial cells. Virology 2006:346(2); 427–439. |
[48] | Rojas M, Woods CR, Mora AL, Xu J, Brigham KL. Endotoxin-induced lung injury in mice: structural, functional, and biochemical responses. Am J Physiol Lung Cell Mol Physiol 2005; 288: L333–L341. |
[49] | Nakae S, Suto H, Berry GJ, Galli SJ. Mast cell-derived TNF can promote Th17 cell-dependent neutrophil recruitment in ovalbumin-challenged OTII mice. Blood 2007; 109:3640–8. |
[50] | Tremblay L, Valenza F, Ribeiro SP, et al. Injurious ventilator strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 1997; 99:944–952. |
[51] | von Bethmann AN, Brasch F, Nusing R, et al. Hyperventilation induces release of cytokines from perfused mouse lung. Am J Respir Crit Care Med 1998; 157: 263–272. |
[52] | Calfee CS, Eisner MD, Parsons PE, Thompson BT, Conner ER Jr, Matthay MA, Ware LB. Soluble intercellular adhesion molecule-1 and clinical outcomes in patients with acute lung injury. Intensive Care Med 2009; 35:248-257. |
[53] | Frank JA, Parsons PE, Matthay MA. Pathogenetic significance of biological markers of ventilator-associated lung injury in experimental and clinical studies. Chest 2006: 130; 1906-1914. |
[54] | Calfee CS, Ware LB, Eisner MD, Parsons PE, Thompson BT, Wickersham N, Matthay MA. NHLBI ARDS Network: Plasma receptor for advanced glycation end-products and clinical outcomes in acute lung injury. Thorax 2008: 63; 1083-1089. |
[55] | Rogier M Determann, Annick ANM Royakkers, Jack J Haitsma, Haibo Zhang, Arthur S Slutsky, V Marco Ranieri, Marcus J Schultz. Plasma levels of surfactant protein D and KL-6 for evaluation of lung injury in critically ill mechanically ventilated patients. BMC Pulmonary Medicine 2010 10:6. |
[56] | Ware LB, Matthay MA, Parsons PE, Thompson BT, Januzzi JL, Eisner MD. Pathogenetic and prognostic significance of altered coagulation and fibrinolysis in acute lung injury/acute respiratory distress syndrome. Crit Care Med 2007: 35; 1821-1828. |
[57] | Stellos K, Gnerlich S, Kraemer B, Lindemann S, Gawaz M. Platelet interaction with progenitor cells: vascular regeneration or injury? Pharmacol Rep 2008): 60; 101–108. |
[58] | Pablo A. Quintero, Martin D. Knolle, Luisa F. Cala, Yuehong Zhuang, and Caroline A. Owen. Matrix Metalloproteinase-8 Inactivates Macrophage Inflammatory Protein-1α to Reduce Acute Lung Inflammation and Injury in Mice J Immunol 2010):184(3); 1575–1588. |
[59] | Calfee CS, Ware LB, Glidden DV, Eisner MD, Parsons PE, Thompson BT, Matthay MA. National Heart, Blood, and Lung Institute Acute Respiratory Distress Syndrome Network: Use of risk reclassification with multiple biomarkers improves mortality prediction in acute lung injury. Crit Care Med 2011:39; 711-717. |
[60] | D. C. Jones, X. Ding, and R. A. Daynes. Nuclear receptor peroxisome proliferator-activated receptor α (PPARα) is expressed in restingmurine lymphocytes. The PPARα in T and B lymphocytes is both transactivation and transrepression competent,” Journal of Biological Chemistry 2002: 277(9); 6838–6845. |
[61] | H. A. Burgess, L. E. Daugherty, T. H. Thatcher, et al. PPARγ agonists inhibit TGF-β induced pulmonary myofibroblast differentiation and collagen production: implications for therapy of lung fibrosis. American Journal of Physiology 2005: 288(632-6); L1146–L1153. |
[62] | J. Becker, C. Delayre-Orthez, N. Frossard, and F. Pons. Regulation of inflammation by PPARs: a future approach to treat lung inflammatory diseases? Fundamental and Clinical Pharmacology 2006: 20(5);429–447. |
[63] | D. M. Simon, M. C. Arikan, S. Srisuma, et al. Epithelial cell PPARγ contributes to normal lung maturation. The FASEB Journal 2006: 20(9);1507–1509. |
[64] | Chackalamannil S. Thrombin receptor (protease activated receptor-1) antagonists as potent antithrombotic agents with strong antiplatelet effects. J Med Chem 2006:49; 5390–5403. |
[65] | Mahoney TS, Weyrich AS, Dixon DA, McIntyre T, Prescott SM, Zimmerman GA. Cell adhesion regulates gene expression at translational checkpoints in human myeloid leukocytes. Proc Natl Acad Sci USA 2001: 98; 10284-10289. |
[66] | Gygi SP, Aebersold R. Mass spectrometry and proteomics. Curr Opin Chem Biol 2000: 4; 489-494. |
[67] | Pradet-Balade B, Boulme F, Beug H, Mullner EW, Garcia-Sanz JA. Translation control: bridging the gap between genomics and proteomics? Trends Biochem Sci 2001: 26; 225-229. |
[68] | Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, Mills GB, Simone C, Fishman DA, Kohn EC, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002: 359; 572-577. |
[69] | Pompon D, Nicolas A: Protein engineering by cDNA recombination in yeasts: shuffling of mammalian cytochrome P-450 functions. Gene 1989: 83; 15-24. |
[70] | Heckmann-Pohl D. M., Bastian S., Altmeier S., and Antes I. Improvement of the fungal enzyme pyranose 2-oxidase using protein engineering, Journal of Biotechnology 2006: 124(1); 26-40. |
[71] | Mills JC, Roth KA, Cagan RL, Gordon JI. DNA microarrays and beyond: completing the journey from tissue to cell. Nat Cell Biol 2001: 3; E175-E178. |
[72] | Walker J, Flower D, Rigley K. Microarrays in hematology. Curr Opin Hematol 2002:9; 23-29. |
[73] | Doerschuk CM. Mechanisms of leukocyte sequestration in inflamed lungs. Microcirculation 2001:8;71-88. |
[74] | Kurahashi K, Kajikawa O, Sawa T, Ohara M, Gropper MA, Frank DW, Martin TR, Wiener-Kronish JP. Pathogenesis of septic shock in Pseudomonas aeruginosa pneumonia. J Clin Invest 1999:104; 743-750. |
[75] | Korstanje R, Paigen B. From QTL to gene: the harvest begins. Nat Genet 2002: 31; 235–236. |
[76] | Peltonen L, McKusick VA. Genomics and medicine: dissecting human disease in the postgenomic era. Science 2001:291; 1224–1229. |
[77] | Spragg RG, Bernard GR, Checkley W, Curtis JR, Gajic O, Guyatt G, Hall J, Israel E, Jain M, Needham DM, Randolph AG, Rubenfeld GD, Schoenfeld D, Thompson BT, Ware LB, Young D, Harabin AL. Beyond mortality: future clinical research in acute lung injury. Am J Respir Crit Care Med 2010: 181; 1121-1127. |
[78] | McLachlan JB, Shelburne CP, Hart JP, Pizzo SV, Goyal R, Brooking-Dixon R, Staats HF, Abraham SN. Mast cell activators: a new class of highly effective vaccine adjuvants. Nat Med 2008: 14(5); 536-41. |
[79] | Alastair G Proudfoot, Matthew Hind, Mark J.D. Griffiths. Biomarkers of acute lung injury: worth their salt? BMC Medicine 2011: 9; 132 |
[80] | Michael A. Matthay, Guy A. Zimmerman, Charles Esmon, Jahar Bhattacharya, Barry Coller, Claire M. Doerschuk, Joanna Floros, Michael A. Gimbrone Jr, Eric Hoffman, Rolf D. Hubmayr, Mark Leppert, Sadis Matalon, Robert Munford, Polly Parsons, Arthur S. Slutsky, Kevin J. Tracey, Peter Ward, Dorothy B. Gail, and Andrea L. Harabin. , Future Research Directions in Acute Lung Injury; Summary of a National Heart, Lung, and Blood Institute Working Group. Am J Respir Crit Care Med 2003: 167: 1027–1035. |