[1] | A. , ‘’Sulphate-Reducing Bacteria and Anaerobic Corrosion’’, Annu. Rev. Microbiol. vol. 39, pp 195-217, 1985 |
[2] | Washington A. Hamilton, ‘’Bioenergetics ofsulphate-reducing bacteria in relation to their environmental impact. Biodegradation’’, vol. 9, pp 201-212, 1998. |
[3] | Michel Magot, Gilles Ravot, Xavier Campaignolle, Brenard Ollivier,, Bharat K. C. Patel , Michel L. Fardeau, Philip Thomas, Jean-Louis Crolet, Jean-Louis Garcia,Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells. Int J. Syst Bacterio, vol. 47, pp 818–824, 1997b. |
[4] | Sadegh Sh. Abedi, Ail .Abdolmaleki, N. Adibi, Failure analysis of SCC and SRB induced cracking of a transmission oil products pipeline. Engineering Failure Analysis, vol. 14, pp 250-261, 2007. |
[5] | Reza Javaherdashti, Singh R.K. Raman, Chris. Panter, Elena V. Pereloma, Microbiologically assisted stress corrosion cracking of carbon steel in mixed and pure cultures of sulfate reducing bacteria. Biodegrad., vol. 58:, pp 27-35, 2006. |
[6] | Jean-Louis Crolet, Michel Magot, Non-SRB sulfidogenic bacteria in oilfield production facilities. Mater. Perform vol. 3, pp 60-64, 1996. |
[7] | Benedetto, J.S.; Almeida, S.K.; Gomes, H.A.; Vazoller, R.F.; (2005), Monitoring of sulfate-reducing bacteria in acid water from uranium mines. Miner. 18: 1341-1343. |
[8] | Michel Magot, Brenard Ollivier, Bharat K. C. Patel, Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek, vol. 77, pp 103–116, 2000. |
[9] | I. Davidova, M.S. Hicks, phillip M. Fedorak, J.M.. Suflita, The influence of microbial processes occurring in oil industry production waters. J. Ind. Microbiol. Biotechnol. vol. 27, pp 80-86, 2001. |
[10] | Hang T. Dinh, Jan Kuever, Marc Mu mann, Achim W. Hassel, Martin Stratmann, Friedrich Widdel, Iron corrosion by novel anaerobic microorganisms. Nature, vol. 427, pp 829-832, 2004. |
[11] | Petra Rueter, Ralf Rabus, Heinz Wilkest, Frank Aeckersberg, Freda Rainey, Holger W. Jannasch, Friedrich Widdel, Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature, vol. 372, pp 455-458, 1994. |
[12] | Toshifumi Sakaguchi, Atsushi Arakaki, Tadashi Matsunaga , Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. Int. J. Syst. Evol. Microbiol. vol. 52, pp 215-221, 2002. |
[13] | E. A. Greene,. C. Hubert, M. Nemati, G.E., Jenneman, G. Voordouw, Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Environ. Microbiol. vol 5, pp 607-617, 2003. |
[14] | Nabile A. Negm, Moshira F. Zaki, Mohamed A. I. Salem, Cationic Schiff base amphiphiles and their metal complexes: surface and biocidal activities against bacteria and fungi. Colloids Surf B. vol. 77, pp 96–103, 2010. |
[15] | Nabile A. Negm, Souad A. Mohamed, Synthesis,characterization and biological activity of sugar-based Gemini cationic amphiphiles. J. Surf Deterg. 11, pp 215–221, 2008. |
[16] | Nabile A. Negm, Salwa M. Morsy, S. M., Mohamed M, Said, Biocidal activity of some mannich base cationic derivatives. Bioorg. Med. Chem. vol 13, pp 5921–5926, 2005. |
[17] | J. Q. Cheng, S. W. YAO, Synthesis and characterization of silver nanoparticles by sonoelectrode-position, Rare Metals. vol. 24, pp 376-378, 2005. |
[18] | L Nover, K. D. Scharf, D. Neumann, Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Mol Cell Biol. vol 13, pp 1648–1655, 1983. |
[19] | Eid M. S. Azzam, Nadia G. Kandile,, Abd elfatah M. Badawi, Radwa M. Sami, Influence in the Surface Activity for Some Cationic Thiol Surfactants Using Their Nanostructures, J. Disp. Sci. and Tech. vol. 32, pp 1325-1331, 2011. |
[20] | A. W. Bauer, W. M. Kirby, J. C. Sherris, M. Turck, Am. J. Clin. Pathol. vol. 45, pp 493-496, 1966. |
[21] | Milton J. Rosen, F. Li, Stephen W. Morrall, D. J. Versteeg, Environ. Sci. Technol. vol. 35, 954-959, 2001. |