American Journal of Biochemistry
p-ISSN: 2163-3010 e-ISSN: 2163-3029
2012; 2(1): 11-15
doi: 10.5923/j.ajb.20120201.03
Ao Iyamu 1, Jc Anionye 2, Ec Onyeneke 3, Om Oluba 4, Om Oyakhire 5, O Aigbe 1
1Department of Medical Biochemistry, College of Medicine, Ambrose Alli University, Ekpoma, Nigeria
2Department of Medical Biochemistry, College of Medicine, University of Benin, P.M.B. 1154,Benin City, Nigeria
3Department of Biochemistry, Faculty of Life Sciences, P.M.B. 1154, Benin City, Nigeria
4Department of Biochemistry, College of Natural Sciences, Joseph Ayo Babalola University, Ikeji-Arakeji, Osun State, Nigeria
5Department of Human Anatomy, University of Portharcourt, Porthacourt, Nigeria
Correspondence to: Om Oluba , Department of Biochemistry, College of Natural Sciences, Joseph Ayo Babalola University, Ikeji-Arakeji, Osun State, Nigeria.
Email: | ![]() |
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved.
The study was aimed at verifying how oxidative status varies with age of diabetes mellitus (DM) in sufferers with adequate blood sugar control. Forty-one diabetic otherwise healthy (DOH) volunteers and 57 apparently healthy controls were used and plasma levels of two endogenous antioxidant enzymes (Superoxide dismutase, SOD, and catalase, CAT) as well as two markers of oxidative damage (Malondialdehyde, MDA and erythrocyte osmotic fragility, EOF) were determined. Results obtained showed significant decreases in plasma SOD and CAT activities, and significant increases in plasma levels of MDA and EOF as age of disease increases. In addition, there were clear significant differences between the oxidative status of DOH and apparently healthy control subjects of similar chronological (birth) age group. Plasma MDA and EOF as markers of oxidative damage were significantly higher in DOH subjects compared with healthy control subjects of similar age. However, plasma SOD and CAT activities were observed to be significantly lower in DOH subjects compared with healthy control subject of comparable age. It could thus be concluded that diabetes is associated with progressive increase in tissue oxidative damage.
Keywords: Solitary Hypertension, Reactive Oxygen Species, Disease – Age, Hypertensive Otherwise Healthy
Cite this paper: Ao Iyamu , Jc Anionye , Ec Onyeneke , Om Oluba , Om Oyakhire , O Aigbe , "Disease-age Correlated Study of Some Patients with Solitary Hypertension Attending Central Hospital, Benin City, Nigeria", American Journal of Biochemistry, Vol. 2 No. 1, 2012, pp. 11-15. doi: 10.5923/j.ajb.20120201.03.
|
[1] | U. Forstermann, and E. I. Closs, “Nitric oxide synthase isozymes: characterization, purification, molecular cloning, and function,” Hypertension, 23, 1121 - 1131 |
[2] | Touyz, R. M., Chen, X., Tabel, F., Yeo, G., He, G., Quinn, M. J., Pagano, P. J., and Schiffrin, E. L., 2002, Expression of a functionally active gp91phox - containing neutrophil - type NADPH oxidase in smooth muscle cells from human resistant arteries regulation by Angiotensin II., Circ Es., 9: 1205 - 1213 |
[3] | Suzuki, H., Delano, F. A., Parks, D. A., Jamshichi, N., Granger, D. N., Ishii, H., Suematsu, M., Zwefach, B. W., and Shnard – Shonbein, G. W., 1998, Xanthine Oxidase activity associated with arterial blood pressure in spontaneously hypertensive rats., Proct Nat Acad Sci USA, 95: 4754 – 4759 |
[4] | Edderkavni, M., Hing, P., Vanguero, E. C., Lee, J. K., Fischor, L., Fries, H., Burchler, M. W., Lerch, M. M., Pandol, S. J., and Gukoshaya, A. S., 2005, Extracellular matrix stimulates reactive oxygen species production and increases pancreatic cancer cell survival through 5 - lipoxygenase and NADPH oxidase., Am J Physiol Gastrointestinal Liver Physiol., 289: G1137 - 1147 |
[5] | Atalay, V. P., Harishchandra, H., D'Souza, V., and D'Souza, B., 2007, Age - related changes in Lipid peroxidation and antioxidants in elderly people., Ind J Cli. Biochem., 22(1):131 – 134 |
[6] | Wider, J. D., Guzik, T. J., Mueller, C. F., Clempus, R. E., Schmidt, H. H., Dikalor, S. I., Griendling, K. K., Jones, D. P., and Harrison, D. G., 2007, Role of the multidrug resistant protein - I in hypertension and vascular dysfunction caused by Angiostensin II., Arterioscl Thromb Vasc Biol., 27: 762 - 768 |
[7] | Kimura, S., Zhang, G. X., Nishiyama, A., Shokoji, T., Yao, L., Fan, Y. Y., Rahman, M., and Abe, Y., 2005, Mitochondria - derived reactive oxygen species and vascular MAD kinases comparison of Angiostensin II nitric oxide., Hypertension, 45: 438 - 444 |
[8] | Ribeiro, M. O., Antunes, E., de Nucci, G., Lovisolo, S. M., and Sats, R., 1992, Chronic inhibition of nitric oxide synthesis: a new model of arterial hypertension., Hypertension, 20: 298 – 303 |
[9] | Wei, E. P., Kantos, H. A., Christman, C. W., De Witt, D. S., and Porlish, J. T., 1985, Long term cardiovascular role of nitric oxide in conscious rats., Circ Res., 57: 781 - 789 |
[10] | Palmer, R. M. J., Ferrige, A. G., and Moncada, S., 1987, Nitric oxide release account for the biological activity of endothelium - derived relaxing factor., Nature, 327: 524 - 526 |
[11] | Gryglewski, R. J., Palmer, R. J., and Moncada, S., 1986, Superoxide anion is involved in the breakdown of endothelium - derived vascular - relaxing factor., Nature, 320:454 - 456 |
[12] | Moro, M. A., Darley – Usmar, V. M., Goodwin, D. A., Read, N. G., Zamora – Pino, R., Feelisch, M., Radmski, M. W., and Moncada, S., 1994, Paradoxical fate and biological action of peroxynitrite in human platelets., Proc Nat Acad Sci USA, 91: 6702 - 6706 |
[13] | Liu, S., Beckan, J. S., and Ku, D. D., 1994, Peroxynitrite, a product of superoxide and nitric oxide, producing coronary vasorelaxation in dogs., J Pharmacol Exp Ther., 268:1114 – 1121 |
[14] | Treasure, C. B., Manoukian, S. V., Klein, J. L, Cita, J. A., Renwick, G. H., Selwyn, A. P., Alexander, R. W., and Ganz, P., 1992, Epicardial coronary artery response to acetylchlorine are impaired in hypertensive patients., Circ Res., 71: 778 - 781 |
[15] | Wassman, S., Wassman, K., and Nikenig, G., 2004, Modulation of oxidant and antioxidant enzyme expression and function in vascular cells., Hypertension, 44: 381 - 386 |
[16] | De – Duve, C., 1978, A re-examination of the physiological role of peroxisomes in: Tocopherol, oxygen and biomembrane (ed. C. De - Duve and O. Hayaishi). Elsevier/North Holland Biomedical Press Amsterdam., pp 351 - 31 |
[17] | Kilic, E., Yazar, S., Saraymen, O., and Ozblige, H., 2003, Serum malondialdehyde level in patients infected with Ascaris Lumbricoides., World J Gastroenterol., 9: 2332 - 2334 |
[18] | Romero, F. J., Bosch – Morell, F., Romero, M. J., Jareno, E. J., Romero, B., Marin, N., and Roma, J., 1998, Lipid peroxidation products and antioxidants in human disease., Environ Health Perspectives, 106: 1229 - 1234 |
[19] | Krogmeier, D. E., Mao, I. L., and Bergen, W. G., 1993, Genetic and non - genetic effects of erythrocyte osmotic fragility in lactating Holstein cows and its association with yield traits., J Dairy Sci., 76: 1994 - 2000 |
[20] | Kampa, M., Nistikaki, A., Tsousis, V., Maliaraki, N., Notas, G., and Castanas, E., 2002, A new automated method for the determination of the total antioxidant capacity (TAC) of human plasma based on the crocin bleaching assay., BMC Clin Pathol., 2:3 |
[21] | Oyewale, J. O., Sanni, A. A., and Ajibade, H. A., 1991, Effects of temperature, pH, and blood storage on osmotic fragility of duck erythrocytes., Zentralblatt fur veternamedizin, 38(4): 261 – 264 |
[22] | Tsakiris, S., Giannoulia – Karantana, A., Simintzi, I. H., and Schulpis, K. H., 2005, The effect of aspartame metabolites on human erythrocyte membrane acetylcholinesterase activity., Pharmacol Res., 53: 1 - 5 |
[23] | Varshney, R., and Kale, R. K., 1990, Effects of calmodulin antagonists on radiation-induced lipid peroxidation in microsomes., Int J Rad Biol., 58: 733-743 |
[24] | Kraus, A., Roth, H. P., and Kirchgessner, M., 1997, Supplementation with Vitamin C, Vitamin E, or β – Carotene influences osmotic fragility and oxidative damage of erythrocytes of Zinc – deficient rats., J Nutr., 127:1290 - 1296 |
[25] | Karabulut, I., Dicle-Balkanci, A., Pehlivanoglu, B., Erdem, A., and Fadillioglu, E., 2009, Deprivation of drinking water up to 48 hours does not affect the osmotic fragility of erythrocytes from captive helmeted guinea fowl (Numida Mealagris)., Tox Industr Health, 25:545 - 550 |
[26] | Fridovich, I., 1989, Superoxide dismutase. An adaptation to a pragmatic gase., J Bio. Chem., 264: 7762-7764 |
[27] | Goth, L., 1991, A simple method for the determination of serum catalase activity and revision of reference range., Clin Chem Acta, 196:143 - 152 |
[28] | Gornall, A. G., Baradawill, C. J., and Maxima, D., 1949, Determination of serum proteins by means of the Biuret reaction., Biol Chem., 177: 751-766 |
[29] | Ogbeibu, E. A., 2005, Biostatistics: A practical approach to research and data handling. Mindex publishing Co. Ltd., Benin City, Nigeria, Pp 171 - 173 |
[30] | Akila, V. P., Harishandra, H., D'Souza, V., and D'Souza, B., 2007, Age related changes in lipid peroxidation and antioxidants in elderly people., Ind J Clin Biochem., 22(1):131 - 134 |
[31] | Ward, W. C., Hodgson, J. M., Puddy, I. B., Mori, T. A., Beiling, L. J., and Croft, K. D. C., 2004, Oxidative stress in human hypertension: association with antihypertensive treatment, gender, nutrition and lifestyle., Free Rad Biol Med., 36: 226 - 232 |
[32] | Simic, D. V., Mimic – Oka, J., Pljesa – Ercegovac, M., Savi – Radojevic, A., Opacic, M., Ivanovic, D. M. B., and Simic, T., 2006, Byproducts of oxidative protein damage and antioxidant enzyme activities in plasma of patients with different degrees of essential hypertension., J Human Hypertension, 20: 149 - 155 |
[33] | Redon, J., Oliva, M. R., Tormos, C., Giner, V., Chares, J., Iradi, A., and Saez, G. T., 2003, Antioxidant activities and oxidative stress byproducts in human hypertension, Hypertension, 41: 1096 - 1101 |
[34] | Fasanmade, A. A., 1984, Erythrocyte osmotic fragility in hypertension and during diuretic therapy., West Afr J Med., 18(3):183 - 186 |
[35] | Gryglewski, R. J., Palmer, R. J., and Moncada, S., 1986, Superoxide anion is involved in the breakdown of endothelium - derived vascular - relaxing factor., Nature, 320:454 - 456 |
[36] | Ristow, M., and Zarse, K., 2010, How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mithormesis)., Exp Gerontol., 45:410 – 418 |
[37] | Anghel, S. A., 2010, Antioxidant not heaven - sent., Harv Sci Rev., 32 - 34 |