[1] | Zosimovych N., 2017, Modeling of Transition Processes in a Partially Invariant Center of Mass Motion Stabilization System. Int. Journ. of Aerospace Sc., No 5 (1), PP. 8-23. |
[2] | Surkov Yu.A., Kremnev R.S., 1998, Mars-96 mission: Mars Exploration with the use of Penetrators, ELSEVIER, Planetary and Space Science, Vol. 46, Issues 11-12, PP. 1689-1696. |
[3] | 1996 Mars Mission, 1996, Press Kit, November, NASA, USA, 61 p. |
[4] | Zosimovych N., 2017, Improving the Spacecraft Center of Mass Stabilization Accuracy, IOSR Journ. of Eng. (IOSRJEN), Vol. 7, Issue 6, PP. 7-14. |
[5] | Krasilstshikov M.N., Serebryakov G.G., 2003, Upravleniye I Navedeniye Bespilotnyh Manevrennyh Letatelnyh Apparatov na Osnove Sovremennyh Informacionnyh Tehnologiy, Moscow, FIZMATLIT, 280 p. |
[6] | Lebedev A.A., Bobronnikov V.T., Krasilstshikov M.N., 1985, Statisticheskaya Dinamika i Optimizatsiya Upravleniya Letatelnyh Apparatov, Moscow, Mashinostroeniye, 280 p. |
[7] | Stabbs G., Pinchuk A., Slundt R., 1970, Tsifrovaya Sistema Stabilizatsii Kosmicheskogo Korablya Apollo, Voprosy Raketnoy Tehniki, No 7. |
[8] | Zosimovych N., 2016, Commercial Launch Vehicle Design, LAP LAMBERT Academic Publishing, 184 p. |
[9] | Polderman J.W., Willems J.C., 2008, Introduction to Mathematical Systems Theory: A Behavioral Approach (Texts in Applied Mathematics), Springer; 2nd edition, 455 p. |
[10] | Spasskii R.A., 1992, Invariance of a System of Automatic control, Journ. of Soviet Math., June, Vol. 60, Issue 2, PP. 1343–1346. |
[11] | Bamieh B., Paganini F., Dahleh M.A., 2002, Distributed Control of Spatially Invariant Systems, IEEE Transactions on Automatic Control, Vol. 47, No. 7, July, PP. 1091-1107. |
[12] | Stchipanov G.V., 1939, Teoriya I Metody Proektirovaniya Avtomaticheskih Regulyatorov, Avtomatika I Telemehanika, № 1. |
[13] | Dorf R.C., Bishop R.H. Modern Control Systems, Pearson, 12th edition, 807 pp. |
[14] | Ferrari S., Stengel R.F., 2004, Online Adaptive Critic Flight Control, Journ. of Guidance, Control, and Dynamics, Vol. 27, No 5, Sept.-Oct., PP. 777-786. |
[15] | The Electronics Engineer’s Handbook, 2005, 5ty Edition McGraw-Hill 19, PP. 19.1-19.30. |
[16] | Polderman J.W., Willems J.C. Introduction to the Mathematical Theory of Systems and Control, 458 p. |
[17] | Feron E., Brat G., Garoche P.L., Manolios P., Pantel M., 2012, Formal Methods for Aerospace Applications. FMCAD tutorials. |
[18] | Colon M., Sankaranarayanan S., Sipma H.B., 2003, Linear Invariant Generation Using non-linear Constraint Solving. In Proc. CAV, LNCS, Springler, PP. 420-432. |
[19] | Souris J., Favre-Felix D., 2004, Proof of Properties in Avionics. In Building the Information Society, Springler, Vol. 156, PP. 527-535. |
[20] | Hennet J.C., Trabuco D.C.E., 1994, Invariant Regulators for Linear Systems under Combined Input and State Constraints. Proc. 33rd Conf. of Decision and Control (IEEE-CDC’94), Lake Buena Vista, Florida USA, Vol. 2, PP. 1030-1036. |
[21] | Luca A., Rodriguez P., Dumur D., 2009, Invariant Sets Method for State-Feedback Control Design, 17th Telecommunications forum TELEFOR Serbia, Belgrad, Nov., 24-26, PP. 681-684. |
[22] | Rustamov G., 2012, Invariant Control Systems of Second Order, IV International Conference “Problems of Cybernetics and Informatics” (PCI’2012), September 12-14, Baku, PP. 22-24. |
[23] | Kelly A., 1994, Modern Inertial and Satellite Navigation Systems. The Robotics Institute Carnegie Mellon University, CMU-RI-TR-94-15. |
[24] | Horemuž M., 2006, Integrated Navigation. Royal Institute of Technology, Stocholm. |
[25] | Malyshev V.V., Krasilshikov M.N., Bobronnikov V.T., Dishel V.D., 1996, Aerospace Vehicle Control, Moscow, MAI. |
[26] | Albertos P., Sala A., 2004, Multivariable Control Systems, Valensia, Spain. |
[27] | Averil B., 1997, Chatfield Fundamentals of High Accuracy Inertial Navigation, Progress in Astronautics and Aeronautics, Vol. 174. |
[28] | Sineglazov V.M., 2003, Theory of Automatic Control. In 2 Vol.: Manual for students of all specialities, Kyiv, NAU. |
[29] | A Review of United States Air Force and Department of Defense Aerospace Propulsion Needs, 2006, The National Academies Press, Washington D.C., 90 p. [Online]. Available: www.nap.edu. |
[30] | Zosimovych N., 2017, Increasing the Accuracy of the Center of Mass Stabilization of Space Probe, “Новината за Напреднали Наука - 2017”, XIII Int. Sc. and Pract. Conf., May, 15-22, Technical Science, Vol. 10, София, «Бял ГРАД-БГ» OOД, PP. 31-37. |
[31] | Mosher D. (2019) China wants to launch to Mars next year — part of an ambitious plan to bring the first Martian soil samples back to Earth, Business Insider, Jan. 16. [Online]. Available: https://www.businessinsider.com/china-mars-spacecraft-launch-2020-rover-sample-return-2019-1. |
[32] | Zosimovych N., 2017, Modeling of Spacecraft Centre Mass Motion Stabilization System, Int. Ref. Journ. of Eng. and Sc. (IRJES), Vol. 6, Issue 4 (April), PP. 34-41. |
[33] | Zosimovych N., 2017, Increasing the Accuracy of the Center of Mass Stabilization of Space Probe with Partially Invariant System, «Science and Education, a New Dimension», Natural and Techn. Sc., Vol. 14, Issue 132, PP. 105-108. |
[34] | Zosimovych N., Noel Joseph Raj A., 2017, Synthesis of Stabilization Algorithms in the System Controlling Rotations of the Operating Device, «Prospects of World Science -2017», XIII Int. Sc. and Pract. Conf., July 30 - August 7, Vol. 4, Sheffield Science and Education ltd, Yorkshire, England, S1 4LR, PP. 14-20. |
[35] | Zosimovych N., 2017, Invariant Stabilization Algorithms in a Control System with Rotating Operating Device, American Journ. of Eng. Res. (AJER), Vol. 6, No. 10, PP. 297–311. |
[36] | Gavrilin M.A., Grishin V.N., Konoplev A.P., Lukashov S.G., 1997, Povysheniye Tochnosti Stabilizatsii Centra Mass KA s Pomoschyu Razrabotannyh Invariantnyh Algoritmov Upravleniya, Nauchn-Tehnicheskiy Otchet, KB Salyut. Научно-технический отчет, КБ «Салют». |
[37] | Gavrilin M.A., Grishin V.N., 1977, Ustoychivost Blizkih k Invariantnym Sistemam Stabilizacii Centra Mass Kosmicheskih Apparatov, MAI, Moscow, Dep. v VINITI No 1631-B97, 17 p. |
[38] | Kulebakin V.S., 1960, Teoriya Invariantnosti Avtomaticheski Reguliruemyh i Upravlyaemyh Sistem, Moscow, Nauka. |
[39] | Petrov B.N., 1967, Sovremennye Metody Proektirovaniya Sistem Avtomaticheskogo Upravleniya, Moscov, Mashinostroeniye, 704 p. |