[1] | NATO Science and Technology Organization. (2006). Integration of Tools and Processes for Affordable Vehicles. Chapter 3: Air Vehicles. NATO RTO Research Task Group AVT 093. |
[2] | Panchenko, Y., Patel, K., Moustapha, H., Dowhan, M. J., Mah, S., & Hall, D. (2002). Preliminary Multi-Disciplinary Optimization in Turbomachinery Design. Proceedings of RTO/AVT symposium on "Reduction of Military Vehicle Acquisition Time and Cost through Advanced Modelling and Virtual Simulation", (p. 22). Paris, France: RTO-MP-089. |
[3] | Martins, J. R., & Lambe, A. B. (2013). Multidisciplinary Design Optimization: A Survey of Architectures. AIAA Journal, Vol. 51(No. 9), 2049-2075. |
[4] | Korte, J. J., Weston, R. P., & Zang, T. A. (1998). Multidisciplinary Optimization Methods for Preliminary Design. Multidisciplinary Optimization Branch, MS 159, NASA Langley Research Center. |
[5] | Lattime, S. B., & Steinetz, B. M. (2004). High-Pressure-Turbine Clearance Control Systems: Current Practices and Future Directions. Journal of Propulsion and Power, 20, 302-311. |
[6] | Hennecke, D. K. (1985). Active and Passive Tip Clearance Control. VKI Lecture Series 1985-05. |
[7] | Melcher, K. J., & Kypuros, J. (2003). Toward a Fast-Response Active Turbine Tip Clearance Control. XVIth International Symposium on Airbreathing Engines (ISABE), (pp. Paper 2003-1102). Cleveland. |
[8] | Boswell, J., & Tibbott, I. (2013). Tip Clearance Control for Turbine Blades. Rolls-Royce plc. European Patent EP2546471. |
[9] | Moret, M., Delecourt, A., Moustapha, H., Abenhaim, A.-I., & Garnier, F. (2017). Automated Thermal and Stress Preliminary Analyses Applied to a Turbine Rotor. Aerospace Science and Technology, 123-131. |
[10] | Savaria, C., Phutthavong, P., Moustapha, H., & Garnier, F. (2017). New Correlations For High-Pressure Gas Turbine Housing and Shroud Segments. Aeronautical Journal, 1-23. |
[11] | Wieringa, R. (2009). Design Science as Nested Problem Solving. 4th International Conference on Design Science Research in Information Systems and Technology, 1-12. |
[12] | Ouellet, Y., Savaria C., Roy, F., & Moustapha, H., Garnier, F. (2016). A Preliminary Design System for Turbine Discs. International Journal of Turbo & Engine jet. (In press) |
[13] | Twahir, A. (2013). Preliminary Design of Blade and Disc Fixing for Aerospace Application using Multi-Disciplinary Approach. Dissertations and Theses. Paper 141. |
[14] | Malak, M., Liu, J., & Mollahosseini, K. (2015). Further Investigation into Hot Gas Ingestion into Turbine Shroud Cavity Using Uniform Crystal Temperature Sensors Measurement for Baseline Configuration. 22nd International Symposium on Air Breathing Engines. Phoenix: ISABE. |
[15] | Kreith, F., Manglik, R. M., & Bohn, M. S. (2011). Principles of Heat Transfer (7th Edition ed.). Stamford, USA: Global Engineering. |
[16] | Incropera, F. P., & DeWitt, D. P. (1996). Fundamentals of Heat and Mass Transfer. New York: John Wiley & Sons. |
[17] | Mehendale, S., Jacobi, A., & Shah, R. (2000). Fluid Flow and Heat Transfer at Micro- and Meso-Scales With Application to Heat Exchanger Design. Applied Mechanics Reviews, 175-193. |
[18] | Wang, B., & Peng, X. (1994). Experimental Investigation on Liquid Forced-Convection Heat Transfer Through Microchannels. International Journal of Heat and Mass Transfer, 73-82. |
[19] | Dittus, F. W., & Boelter, L. M. (1930). Univ. Calif. Berkeley Publ. Eng., vol 2, p. 433. |
[20] | Sieder, E. N., & Tate, C. E. (1936). Heat Transfer and Pressure Drop of Liquids in Tubes. Ind. Eng. Chem., vol. 28, p. 1429. |
[21] | Goldstein, R., & Franchett, M. (1988). Heat Transfer From a Flat Surface to an Oblique Impinging Jet. Journal of Heat Transfer, 84-90. |
[22] | Van Treuren, K., Wang, Z., Ireland, P., Jones, T., & Kohier, S. (1996). Comparison and Prediction of Local and Average Heat Transfer Coefficients Under an Array of Inline and Staggered Impinging Jets. International Gas Turbine and Aeroengine Congress & Exhibition. Birmingham: ASME. |
[23] | Azad, G. S., Han, J.-C., Teng, S., & Boyle, R. J. (2000). Heat Transfer and Pressure Distributions on a gas Turbine Blade Tip. Journal of Turbomachinery, 122, 717-724. |
[24] | Prasad, A., & Wagner, J. (2000). Unsteady Effects in Turbine Tip Clearance Flows. Journal of Turbomachinery, 621-627. |
[25] | Rademaker, E., Huls, R., Soemarwoto, B., & van Gestel, R. (2013). Modeling Approach to Calculate Redistributions of HPT-Shroud Cooling Channels Minimizing Thermal Stresses Including Some Turbine Blade Tip Effects. Turbine Blade Tip Symposium. Hamburg: ASME. |