[1] | Research and Simulation on Spinning Warhead Centroid Maneuvering Control and Guide System by Liming Cui (D). Xi’an, Northwest University of Industry, 2000. |
[2] | Research on the Composite Control of Jet Direct Force and Aerodynamic Force on Rolling Missile (D) by Jianke Sha. Xi’an, Northwest University of Industry, 2004. |
[3] | Analysis on the Centroid Control Strategy (J). The Journal of Northwest University of Industry, 2002, 20(1): 117-120. |
[4] | Lin TC. Sproul LK, Mckeel SA, Novel Approach for Maneuvering Reentry Vehicle Design (J). Journal of Spacecraft and Rockets, 2003, 40(5): 605-614. |
[5] | A Study on the Concept of Momentum Wheel Warhead Attitude Control System by Enmi Yong and Guojin Tang. The Journal of Astronavigation, 2006, 27(3): 396-401. |
[6] | Design of Momentum Wheel Warhead Attitude Control (J). System Project and Electronic Technology, 2006, 28(9): 1384-1387. |
[7] | H. Kurokawa. Exact Singularity Avoidance Control of the Pyramid Type CMG system(C)// Proceedings of AIAA Guidance, Navigation and Control Conference, Scottsdale, AZ, 1994: 170-180. |
[8] | Summarizations on the SGCMG Steering Law (J) by Zhong Wu and Hongxin Wu, The Journal of Astronavigation, 2000, 21(4): 140-145. |
[9] | A Preliminary Analysis of Pershing II Missiles and Warheads (J). Missile and Space Vehicle Technology, 1994, (1): 7-15. |
[10] | The Configuration Analysis of SGCMG System. Astronavigation Control, 1998, 16(1): 19-27. |
[11] | Sands, T., Mihalik, R., Camacho, H., “Theoretical Context of the Nuclear Posture Review”, Journal of Social Sciences, accepted in 14(1), 2018. |
[12] | Sands, T. and R. Mihalik, 2016. Outcomes of the 2010 and 2015 nonproliferation treaty review conferences. World J. Soc. Sci. Humanities, 2: 46-51. DOI: 10.12691/wjssh-2-2-4. |
[13] | Sands, T., 2016. Strategies for combating Islamic state. Soc. Sci., 5: 39-39. DOI: 10.3390/socsci5030039. |
[14] | Mihalik, R., H. Camacho and T. Sands, 2017. Continuum of learning: Combining education, training and experiences. Education, 8: 9-13. DOI: 10.5923/j.edu.20180801.03. |
[15] | Sands, T., H. Camacho and R. Mihalik, 2017. Education in nuclear deterrence and assurance. J. Def. Manag., 7: 166-166. DOI: 10.4172/2167-0374.1000166. |
[16] | Sands, T. Fine Pointing of Military Spacecraft. Ph.D. Dissertation, Naval Postgraduate School, Monterey, CA, USA, 2007. |
[17] | Kim, J., Sands, T., Agrawal, B., 2007. Acquisition, tracking, and pointing technology development for bifocal relay mirror spacecraft. Proc. SPIE, 6569. DOI: 10.1117/12.720694. |
[18] | Sands, T, Kim, J., Agrawal, B., 2006. 2H Singularity free momentum generation with non-redundant control moment gyroscopes. Proc. IEEE CDC. 1551-1556. DOI: 10.1109/CDC.2006.377310. |
[19] | Sands, T, Kim, J., Agrawal, B., 2009. Control moment gyroscope singularity reduction via decoupled control. Proc. IEEE SEC. 1551-1556. DOI: 10.1109/SECON.2009.5174111. |
[20] | Sands, T, Kim, J., Agrawal, B., 2012. Nonredundant single-gimbaled control moment gyroscopes. J. Guid. Dyn. Contr. 35: 578-587. DOI: 10.2514/1.53538. |
[21] | Sands, T, Kim, J., Agrawal, B., 2016. Experiments in Control of Rotational Mechanics. Intl. J. Auto. Contr. Intel. Sys., 2: 9-22. ISSN: 2381-7534. |
[22] | Agrawal, B., Kim, J., Sands, T., “Method and apparatus for singularity avoidance for control moment gyroscope (CMG) systems without using null motion”, U.S. Patent 9567112 B1, Feb 14, 2017. |
[23] | Sands, T, Kim, J., Agrawal, B., 2018. Singularity Penetration with Unit Delay (SPUD). Mathematics, 6: 23-38. DOI: 10.3390/math6020023. |
[24] | Sands, T., Lorenz, R. “Physics-Based Automated Control of Spacecraft” Proceedings of the AIAA Space 2009 Conference and Exposition, Pasadena, CA, USA, 14–17 September 2009. |
[25] | Sands, T. 2012. Physics-based control methods. Adv. Space. Sys. Orb. Det., InTech, London. DOI: 10.5772/2408. |
[26] | Sands, T., “Improved Magnetic Levitation via Online Disturbance Decoupling”, Physics Journal, 1(3) 272-280, 2015. |
[27] | Sands, T., “Phase Lag Elimination At All Frequencies for Full State Estimation of Spacecraft Attitude”, Physics Journal, 3(1) 1-12, 2017. |
[28] | Nakatani, S, 2014. Simulation of spacecraft damage tolerance and adaptive controls, Proc. IEEE Aero., 1-16. DOI: 10.1109/AERO.2014.6836260. |
[29] | Nakatani, S., 2016. Autonomous damage recovery in space. Intl. J. Auto. Contr. Intell. Sys., 2(2): 22-36. ISSN Print: 2381-75. |
[30] | Nakatani, S., 2018. Battle-damage tolerant automatic controls. Elec. and Electr. Eng., 8: 10-23. DOI: 10.5923/j.eee.20180801.02. |
[31] | Heidlauf, P.; Cooper, M. “Nonlinear Lyapunov Control Improved by an Extended Least Squares Adaptive Feed forward Controller and Enhanced Luenberger Observer”, In Proceedings of the International Conference and Exhibition on Mechanical & Aerospace Engineering, Las Vegas, NV, USA, 2–4 October 2017. |
[32] | Sands, T., 2017. Nonlinear-adaptive mathematical system idenfication. Computation. 5: 47-59. DOI: 10.3390/computation5040047. |
[33] | Cooper, M., Heidlauf, P., Sands, T., 2017. Controlling Chaos—Forced van der Pol Equation. Mathematics, 5: 70-80. DOI: 10.3390/math5040070. |
[34] | Sands, T., Kenny, T. Experimental piezoelectric system identification, J. Mech. Eng. Auto, 7: 179-195. DOI: 10.5923/j.jmea.20170706.01. |
[35] | Sands, T., 2017. Space systems identification algorithms. J. Space Expl. 6: 138-149. ISSN: 2319-9822. |
[36] | Sands, T., “Experimental Sensor Characterization”, Journal of Space Exploration, 7(1) 140, 2018. |
[37] | Sands, T., Armani, C., Analysis, correlation, and estimation for control of material properties. J. Mech. Eng. Auto. 8: 7-31, DOI: 10.5923/j.jmea.20180801.02. |
[38] | Sands, T, 2009. Satellite electronic attack of enemy air defenses. Proc. IEEE CDC. 434-438. DOI: 10.1109/SECON.2009.5174119. |
[39] | Sands, T., 2018. Space mission analysis and design for electromagnetic suppression of radar. Intl. J. Electromag. and Apps., 8: 1-25. DOI: 10.5923/j.ijea.20180801.01. |