[1] | Tzou HS, Zhong JP.: Linear theory of piezoelectric shell vibrations. J. Sound Vib. 175(1), 77–88 (1994). |
[2] | Benjeddou A.: Advances in piezoelectric finite element modelling of adaptive structural elements: a survey. Comput. Struct. 76(1), 347–63 (2000). |
[3] | Kapuria S, Sengupta S, Dumir PC.: Three-dimensional solution for simply-supported piezoelectric cylindrical shell for axisymmetric load. Comput. Meth. Appl. Mech. Eng. 140(1-2), 139–55 (1997). |
[4] | Robbins DH, Reddy JN.: Analysis of piezoelectrically actuated beams using a layer-wise displacement theory. Comput. Struct. 41, 265–79 (1991). |
[5] | Ossadzow-David C, Touratier M.: A mixed model for adaptive composite plates with piezoelectric for anisotropic actuation. Compos. Sci. Technol. 64, 2121–2137 (2004). |
[6] | Hussein MM and Heyliger P.: Three-dimensional vibrations of layered piezoelectric cylinders. J. Eng. Mech. 124, 1294–8 (1998). |
[7] | Chen CQ, Shen YP.: Piezothermoelasticity analysis for a cylindrical shell under the state of axisymmetric deformation. Int. J. Eng. Sci. 34(14), 1585–600 (1996). |
[8] | Bernadou M, Haenel C.: Modelization and numerical approximation of piezoelectric thin shells Part 1: The continuous problems. Comput. Meth. Appl. Mech. Eng. 192, 4003–43 (2003). |
[9] | Tzou HS, Zhong JP.: Electromechanics and vibrations of piezoelectric shell distributed systems. J. Dyn. Syst. Meas. Contr. 115(3), 506–517 (1993). |
[10] | Pinto Carreia IF, Mota Soares CM, Mota Soares CA.: Analysis of piezolaminated axisymmetric shell: a semi analytical higher order model. In: Computational Methods for Shell and Spatial Structures, Proc. IASS-IACM, Athens, p. 1–19 (2000). |
[11] | Heyliger P, Pei KC, Saravanos D.: Layerwise mechanics and finite element model for laminated piezoelectric shell, Journal of AIAA, 34, 2353–60 (1996). |
[12] | Dumir PC, Dube GP, Kapuria S.: Exact Piezoelectric solution of simply-supported orthotropic circular cylindrical panel in cylindrical bending. Int. J. Solids Struct. 6, 685-702 (1997). |
[13] | Saviz MR, Shakeri M, Yas MH.: Electroelastic fields in a layered piezoelectric cylindrical shell under dynamic load. Smart Mater. Struct. 16, 1683–1695 (2007). |
[14] | Kogl M, Gaul L.: A boundary element method for transient piezoelectric analysis. Engineering 1. Eng. Anal. Boundary Elem. 24, 591–598 (2000). |
[15] | Ray MC, Reddy JN.: Active control of laminated cylindrical shells using piezoelectric fiber reinforced composites. Compos. Sci. Technol. 65, 1226–1236 (2005). |
[16] | Chen CQ, Shen YP, Wang XM.: Exact Solution of orthotropic cylindrical shell with piezoelectric layers under cylindrical bending. Int. J. Solids Struct. 33(30), 4481-4494 (1996). |
[17] | Kapuria S, Kumari P, Nath JK. Analytical piezoelasticity solution for vibration of piezoelectric laminated angle-ply circular cylindrical panels. J. Sound Vib. 324, 832–849 (2009). |
[18] | Daneshmehr AR, Shakeri M.: Three-Dimensional Elasticity Solution of Cross-Ply Shallow and Non-Shallow Panels with Piezoelectric Sensors under Dynamic Load. Compos. Struct. 80, 429–439 (2007). |
[19] | Sedighi MR, Shakeri M.: A three-dimensional elasticity solution of functionally graded piezoelectric cylindrical panels. Int. J. Solids Struct. 18, 1-12 (2009). |
[20] | Jianqiao Y.: New approach for the bending problem of shallow shell by the boundary element Method. Appl. Math. Modell. 12(5), 467-470 (1988). |
[21] | Ramesh G, Krishnamoorthy CS.: Geometrically non-linear analysis of plates and shallow shells by dynamic relaxation. Comput. Meth. Appl. Mech. Eng. 123, 15-32 (1995). |
[22] | Abouhamza M, Aghdam MM., Alijani F.: Bending analysis of symmetrically laminated cylindrical panels using the extended Kantorovich Method. Mech. Adv. Mater. Struct. 14(7), 523-530 (2007). |
[23] | Alavi SM, Aghdam MM, Eftekhari SA.: Three-dimensional elasticity analysis of thick rectangular laminated composite plates using Meshless Local Petrov-Galerkin (MLPG) method. AMM. 5, 331-338 (2006). |
[24] | Malekzadeh P, Farid M, Zahedinejad P, Karami G.: Three-dimensional free vibration analysis of thick cylindrical shells resting on two-parameter elastic supports. J. Sound Vib. 313(3), 655-675 (2008). |
[25] | Malekzadeh P, Farid M, Zahedinejad P.: A three-dimensional layerwise-differential quadrature free vibration analysis of laminated cylindrical shells. Int. J. Press. Vessels Pip. 85(7), 450-458 (2008). |
[26] | Liu FL, Liew KM.: Differential cubature method for static solutions of arbitrarily shaped thick plates. Int. J. Solids Struct. 35(28-29), 3655–3674 (1998). |
[27] | Shu C, Du H.: Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates. Int. J. Solids Struct. 34(7), 819-35 (1997). |
[28] | Reddy JN.: On laminated composite plates with integrated sensors and actuators. Eng. Struct. 21, 568–593 (1999). |
[29] | Toorani MH, Lakis AA. General equations of anisotropic plates and shells including transverse shear deformations, Rotary inertia and initial curvature effects. J. Sound Vib. 237(4), 561-615 (2000). |
[30] | Reddy JN.: Mechanics of laminated composite plates and shells: theory and analysis. 2nd ed. Boca Raton: CRC Press, (2004). |
[31] | Civan F, Sliepcevich CM.: Differential quadrature for multidimensional problems. J. Math. Anal. Appl. 101, 423-443 (1984). |
[32] | Shu C, Richards BE.: Parallel simulation of incompressible viscous flows by generalized differential quadrature. Comput. Syst. Eng. 3, 271-281 (1992). |
[33] | Bert CW, Wang X, Striz AG.: Differential quadrature for static and free vibrational analysis of anisotropic plates. Int. J. Solids Struct. 30, 1737-1744 (1993). |
[34] | Shu C, Richards BE.: Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids. 15, 791-798 (1992). |
[35] | Varadan TK, Bhaskar K.: Bending of laminated orthotropic cylindrical shells – An elasticity approach. Comput. Struct. 17, 141-156 (1991). |
[36] | Cheng ZQ, He LH, Kitipornchai S.: Influence of imperfect interfaces on bending and vibration of laminated composite shells. Int. J. Solids Struct. 37, 2127-2150 (2000). |
[37] | Heyliger P, Saravanos DA. Exact free vibration analysis of laminated plates with embedded piezoelectric layers. J. Acoust. Soc. Am. 98, 1547–1557 (1995). |