[1] | J.P. Hart, A. Crew, E. Crouch, K.C. Honeychurch, R.M. Pemberton, 2007, Recent developments in screen-printed carbon electrode sensors/biosensors for electrochemical analysis. Chapter 23 in Comprehensive Analytical Chemistry, vol. 49, Eds. S. Alegret, A. Merkoci, R.M. Elsevier B.V., Amsterdam, pp. 497-557. |
[2] | J.P. Hart, A.K. Abass, K.C. Honeychurch, R.M. Pemberton, S.L. Ryan, R. Wedge, 2003, Sensors/biosensors, based on screen-printing technology for biomedical applications, Indian Journal of Chemistry Section A-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, 42, 709-718. |
[3] | J.P. Hart, A. Crew, E. Crouch, K.C. Honeychurch, R.M. Pemberton, 2004, Some recent designs and developments of screen-printed carbon electrochemical sensors/biosensors for biomedical, environmental and industrial analyses, Anal. Lett. 37, 789–830. |
[4] | K.C. Honeychurch and J.P. Hart, 2003, Screen-printed electrochemical sensors for monitoring metal pollutants, TrAC, 7/8, 456–469. |
[5] | J.-L. Chang and J.-M. Zen, 2006, Fabrication of disposable ultramicroelectrodes: Characterization and applications, Electrochem. Commun. 8, 571–576. |
[6] | D.H. Craston, C.P. Jones, D.E. Williams, N. Elmurr, 1991, Microband Electrodes Fabricated By Screen Printing Processes - Applications in Electroanalysis, Talanta, 38, 17-26. |
[7] | D.E. Williams, K. Ellis, A. Colville, S.J. Dennison, G. Laguillo, J. Larsen, 1997, Hydrodynamic modulation using vibrating electrodes: Application to electroanalysis, J. Electroanal. Chem. 432, 159-169. |
[8] | M. Rochelet-Dequaire, B. Limoges P. Brossier, 2006, Subfemtomolar electrochemical detection of target DNA by catalytic enlargement of the hybridized gold nanoparticle labels, Analyst, 131, 923–929. |
[9] | F.J. Rawson, W.M. Purcell, J. Xu, D.C. Cowell, P.R. Fielden, N. Biddle, J.P. Hart, 2007, Fabrication and Characterisation of Novel Screen-Printed Tubular Microband Electrodes, and Their Application to the Measurement of Hydrogen Peroxide, Electrochim. Acta, 52, 7248-7253. |
[10] | L. Authier, C. Grossiord, P. Brossier, B. Limoges, 2001, Gold Nanoparticle-Based Quantitative Electrochemical Detection of Amplified Human Cytomegalovirus DNA Using Disposable Microband Electrodes, Anal. Chem. 73, 4450-4456. |
[11] | J.C. Ball, D.L. Scott, J.K. Lumpp, S. Daunert, J. Wang, L.G. Bachas, 2000, Electrochemistry in Nanovials Fabricated by Combining Screen Printing and Laser Micromachining, Anal. Chem. 72, 497-501. |
[12] | A. Tizzard, J. Webber, R. Gooneratne, R. John, J. Hay, N. Pasco, 2004, MICREDOX: application for rapid biotoxicity assessment, Anal. Chim. Acta, 522, 197-205. |
[13] | A.M. Bond, 1994, Past, Present and Future Contributions of Microelectrodes to Analytical Studies Employing Voltammetric Detection - A Review, Analyst 119, R1-R21. |
[14] | X. Xie, D. Stueben, Z. Berner, 2005, The application of microelectrodes for the measurements of trace metals in water, Anal. Lett. 38, 2281-2300. |
[15] | H. Hahn, C.W. Huck, M. Rainer, M. Najam-ul-Haq, R. Bakry, T. Abberger, P. Jennings, W. Pfaller, G.K. Bonn, 2007 Analysis of glutathione in supernatants and lysates of a human proximal tubular cell line from perfusion culture upon intoxication with cadmium chloride by HPLC and LC-ESI-MS, Anal. Bioanal. Chem. 388, 1763–1769. |
[16] | J.P. Richie, P. Abraham, Y. Leutzinger, 1996, Long term stability of blood glutathione and cysteine in humans, Clin. Chem. 42, 1100-1105. |
[17] | J.C. Harfield, C. Batchelor-McAuley, R.G. Compton, 2012, Electrochemical determination of glutathione: a review, Analyst, 137, 2285–2296. |
[18] | D. Húska, O. Zítka, V. Adam, M. Beklová, S. Křížková, L. Zeman, A. Horna, L. Havel, J. Zehnálek, R. Kizek, 2007, A sensor for investigating the interaction between biologically important heavy metals and glutathione, Czech J. Anim. Sci. 52, 37–43. |
[19] | W.B. Jakoby, O.W. Griffith, 1987, Sulfur and Sulfur Amino Acids, Methods in Enzymol. 143 and references therein. |
[20] | R. Rossi, A. Milzani, I. Dalle-Donne, D. Giustarini, L. Lusini, R. Colombo, P. Di Simplicio, 2002, Blood Glutathione Disulfide: In Vivo Factor or in Vitro Artifact? Clin. Chem. 48, 742–753. |
[21] | J.H. Zagal, 1992, Metallophthalocyanines as Catalysts in Electrochemical Reactions, Coord. Chem. Rev. 119, 89-136. |
[22] | F. Ricci, F. Arduini, A. Amine, D. Moscone, G. Palleschi, 2004, Characterisation of Prussian blue modified screen-printed electrodes for thiol detection, J. Electroanal. Chem. 563, 229-237. |
[23] | P.C. White, N.S. Lawrence, J. Davis, R.G. Compton, 2002, Electrochemical Determination of Thiols: A Perspective, Electroanalysis, 14, 89-98. |
[24] | S.A. Wring, J.P. Hart, B.J. Birch, 1992, Development of an Amperometric Assay for the Determination of Reduced Glutathione, using Glutathione-Peroxidase andScreen-printed Carbon Electrodes Chemically Modified with Cobalt Phthalocyanine, Electroanalysis, 4, 299-309. |
[25] | S.A. Wring, J.P. Hart, B.J. Birch, 1991, Voltammetric Behaviour of Screen-Printed Carbon Electrodes, Chemically Modified With Selected Mediators, and their Application as Sensors for the Determination of Reduced Glutathione, Analyst, 116, 123-129. |
[26] | S.A. Wring and J.P. Hart, B.J. Birch, 1989, Development of an Improved Carbon Electrode Chemically Modified with Cobalt Phthalocyanine as a Re-usable Sensor for Glutathione, Analyst, 114, 1563-1570. |
[27] | S.A. Wring, J.P. Hart, L. Bracey, B.J. Birch, 1990, Development of screen-printed carbon electrodes modified with cobalt phthalocyanine, for electrochemical sensor applications, Anal. Chim. Acta, 231, 203-212. |
[28] | A. Hobby, Screen Printing for the Industrial User, DEK Printing Machines Ltd. March 1997. |
[29] | K.C. Honeychurch, S. Al-Berezanchi, J.P. Hart, 2011, The voltammetric behaviour of lead at a microband screen-printed carbon electrode and its determination in acetate leachates from glazed ceramic plates, Talanta, 84, 717–723. |
[30] | F.J. Rawson, W.M. Purcell, J. Xu, R.M. Pemperton, P.R. Fielden, N. Biddle, J.P. Hart, 2009, A microband lactate biosensor fabricated using a water-based screen-printed carbon ink, Talanta, 77, 1149–1154. |
[31] | R.M. Pemberton, R. Pittson, N. Biddle, J.P. Hart, 2009, Fabrication of microband glucose biosensors using a screen-printing water-based carbon ink and their application in serum analysis, Biosens. Bioelectron. 24, 1246–1252. |
[32] | J. Xu, M. Ma, W.M. Purcell, 2003, Biochemical and functional changes of rat liver spheroids during spheroid formation and maintenance in culture: II. nitric oxide synthesis and related changes, J. Cell. Biochem., 15, 90, 1176-1185. |
[33] | N. Pereira-Rodrigues, R. Cofré, J.H. Zagal, F. Bedioui, 2007, Electrocatalytic activity of cobalt phthalocyanine CoPc adsorbed on a graphite electrode for the oxidation of reduced L-glutathione (GSH) and the reduction of its disulfide (GSSG) at physiological pH, Bioelectrochemistry, 70, 147–154. |