[1] | Hukuhara, M., 1967, Integration des applications mesurables dont la valeur est un compact convexe, Funkcial. Ekvac., 10, 205-223. |
[2] | Bridgland, T.F., 1970, Trajectory integrals of set valued functions, Pacific J. of math., 33 (1), 43-68. |
[3] | Tyurin, Yu.N., 1965, Mathematical statement of the simplified model of industrial planning, Economic and mathematical methods, 1 (3), 391 - 409. (in Russian) |
[4] | Banks, H.T., and Jacobs, M.Q., 1970, A differential calculus for multifunctions, J. Math. Anal. Appl., 29, 246-272, doi:10.1016/0022-247X(70)90078-8. |
[5] | Plotnikov, A.V., 2000, Differentiation of multivalued mappings. T-derivative, Ukr. Math. J., 52 (8), 1282-1291, doi:10.1023/A:1010361206391. |
[6] | Plotnikov, V.A., Plotnikov, A.V., and Vityuk, A.N., 1999, Differential equations with a multivalued right-hand side. Asymptotic methods, AstroPrint, Odessa. (in Russian) |
[7] | Vityuk, A.N., 2003, Fractional differentiation of multivalued mappings, Dopov. Nats. Akad. Nauk Ukr. Math. Prirodozn. Tekh. Nauki, (10), 75-79. (in Russian) |
[8] | Bede, B., and Gal, S.G., 2005, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets Syst., 151, 581-599. doi:10.1016/j.fss.2004.08.001. |
[9] | Plotnikov, A.V., and Skripnik, N.V., 2011, Set-valued differential equations with generalized derivative, J. Adv. Res. Pure Math., 3 (1), 144 – 160, doi:10.5373/jarpm.475.062210. |
[10] | Bede, B., and Stefanini, L., 2009, Numerical Solution of Interval Differential Equations with Generalized Hukuhara Differentiability, IFSA/EUSFLAT Conf., 730-735. |
[11] | Bede, B., and Stefanini L., 2008, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Working Paper Series in Economics, Math. and Statistics, WP-EMS #2008/03, Univ. Urbino ''Carlo Bo''. |
[12] | de Blasi, F.S., and Iervolino F., 1969, Equazioni differentiali con soluzioni a valore compatto convesso, Boll. Unione Mat. Ital., 2 (4-5), 491-501. |
[13] | Chalco-Cano, Y., Román-Flores, H., and Jiménez-Gamero, M.D., 2011, Generalized derivative and -derivative for set-valued functions, Inf. Sci., 181 (1), 2177-2188, doi:10.1016/j.ins.2011.01.023. |
[14] | Lasota, A., and Strauss, A., 1971, Asymptotic behavior for differential equations which cannot be locally linearized, Journal of Differential Equations, (10), 152-172, doi:10.1016/0022-0396(71)90103-3. |
[15] | Martelli, M., and Vignoli, A., 1974, On differentiability of multi-valued maps, Boll. Unione Mat. Ital., 4 (10), 701-712. |
[16] | Plotnikova, N.V., 2005, Systems of linear differential equations with a π-derivative and linear differential inclusions, Russ. Acad. Sci., Sb., Math., 196 (11-12), 1677-1691, doi:10.1070/SM2005v196n11ABEH003726. |
[17] | Plotnikov, A.V., and Skripnik, N.V., 2009, Differential equations with ''clear'' and fuzzy multivalued right-hand sides. Asymptotics Methods, AstroPrint, Odessa. (in Russian) |
[18] | Stefanini, L., and Bede, B., 2009, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, 71 (3-4), 1311-1328, doi: 10.1016/j.na.2008.12.005. |
[19] | de Blasi, F.S., and Iervolino F., 1971, Euler method for differential equations with set - valued solutions, Boll. Unione Mat. Ital., 4 (4), 941-949. |
[20] | de Blasi, F.S., Lakshmikantham, V., and Gnana Bhaskar T., 2007, An existence theorem for set differential inclusions in a semilinear metric space, Control Cybernet., 36 (3), 571-582. |
[21] | Brandao Lopes Pinto, A.J., de Blasi, F.S., and Iervolino, F., 1970, Uniqueness and existence theorems for differential equations with compact convex valued solutions, Boll. Unione Mat. Ital., 4, 534-538. |
[22] | Lakshmikantham, V., Granna Bhaskar, T., and Vasundhara Devi, J., 2006, Theory of set differential equations in metric spaces, Cambridge Scientific Publishers. |
[23] | Lakshmikantham, V., and Mohapatra, R.N., 2003, Theory of Fuzzy Differential Equations and Inclusions, Taylor & Francis, London, doi:10.1201/9780203011386. |
[24] | Perestyuk, N. A., Plotnikov, V.A., Samoilenko, A.M., and Skripnik, N.V., 2011. Differential equations with impulse effects: multivalued right-hand sides with discontinuities, de Gruyter Stud. Math.: 40, Berlin/Boston: Walter De Gruyter GmbH&Co. |
[25] | Rådström, H., 1952, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc., 3, 165-169. |
[26] | Filippov, A.F., 1988, Differential equations with discontinuous righthand sides, Kluwer Academic Publishers Group, Dordrecht. |
[27] | Polovinkin, E.S., 1996, Strongly convex analysis, Sb. Math., 187, 259-286, doi:10.1070/SM1996v187n02ABEH000111. |
[28] | Kelley, J.L., 1975, General topology. Reprint of the 1955 edition[Van Nostrand, Toronto, Ont.]. Graduate Texts in Mathematics, No. 27. Springer-Verlag, New York-Berlin. |
[29] | Balashov, M.V., Polovinkin, E.S., 2000, M-strongly convex subsets and their generating sets, Sb. Math., 191, 25-60, doi:10.1070/sm2000v191n01ABEH000447. |