[1] | N. Dematage, E.V.A. Premalal, A. Konno, “Employment of CuI on Sb2S3 Extremely Thin Absorber Solar Cell: N719 Molecules as a Dual Role of a Recombination Blocking Agent and an Efficient Hole Shuttle” Int. J. Electrochem. Sci., 9, pp. 1729 – 1737, 2014. |
[2] | J Conti, PH., International Energy Outlook 2011.U.S. Energy Administration, (2011). |
[3] | M. Gratzel, Nature, “Photoelectrochemical cells” vol. 414, pp. 338-344, 2001. |
[4] | M. Kouhnavard , S. Ikeda , N.A. Ludin, N.B. Ahmad Khairudin, B.V. Ghaffari, M.A. Mat-Teridi, M.A. Ibrahim, S. Sepeai, K. Sopian, “A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells” Renewable and Sustainable Energy Reviews vol. 37, pp.397–407, 2014. |
[5] | L.M. Goncalves, V.Z. Bermudez , H.A. Ribeiro, A.M. Mendes, “Dye-sensitized solar cells: A safe bet for the future”, Energy and Environmental Science vol.1 pp. 655-667, 2008. |
[6] | N. Memarian, I. Concina, A. Braga, S.M. Rozati, A. Vomiero, G. Sberveglieri, “Hierarchically Assembled ZnO Nanocrystallites for High-Efficiency Dye-Sensitized Solar Cells” Angew. Chem. Int. Ed. Vol. 50, pp. 12321–12325, 2011. |
[7] | A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M. K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin and M. Grätzel, “Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency” Science vol. 334, pp. 629-634, 2011. |
[8] | S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, Md. K. Nazeeruddin and M. Grätzel, “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers”, Nature Chemistry, vol. 6, pp. 242–247, 2014. |
[9] | S. Mori, S. Fukuda, S. Sumikura, Y. Takeda, Y. Tamaki, E. Suzuki and T. Abe, J. Phys. Chem. “Charge-Transfer Processes in Dye-Sensitized NiO Solar Cells” Vol. C 112 pp. 16134-16139, 2008. |
[10] | Y. Mizoguchi and S. Fujihara, Electrochem, “Fabrication and Dye-Sensitized Solar Cell Performance of Nanostructured NiO/Coumarin 343 Photocathodes” Solid-State Lett., vol. 11, p. K78–K80, 2008. |
[11] | Z. Huang, G. Natu, Z. Ji, M. He, M. Yu, Y. Wu, “Probing the Low Fill Factor of NiO p-Type Dye-Sensitized Solar Cells”, J. Phys. Chem. Vol. C 116, pp. 26239−26246, 2012. |
[12] | V. Mani, S.M. Chen, B.S. Lou, “Three Dimensional Graphene Oxide-Carbon Nanotubes and Graphene - Carbon Nanotubes Hybrids”, Int. J. Electrochem. Sci., vol.8, pp.11641-11660, 2013. |
[13] | J. Ahmed, C. K. Blakely, J. Prakash, S. R. Bruno, M. Yu, Y. Wu, V. V. Poltavets, “Scalable synthesis of delafossite CuAlO2 nanoparticles for p-type dye-sensitized solar cells applications” Journal of Alloys and Compounds, vol. 591, pp. 275–279, 2014. |
[14] | M. Yu, G. Natu, Z. Ji, and Y. Wu, “p-Type Dye-Sensitized Solar Cells Based on Delafossite CuGaO2 Nanoplates with Saturation Photovoltages Exceeding 460 mV” J. Phys. Chem. Lett. Vol. 3 pp. 1074−1078, 2012. |
[15] | D. Xiong, Z. Xu, X. Zeng, W. Zhang, W. Chen, X. Xu, M. Wanga and Y.B. Cheng, “Hydrothermal synthesis of ultrasmall CuCrO2 nanocrystal alternatives to NiO nanoparticles in efficient p-type dye-sensitized solar cells” J. Mater. Chem. Vol. 22, pp. 24760– 24768, 2012. |
[16] | Z. Xu, D. Xiong, H. Wang, W. Zhang, X. Zeng, L. Ming, W. Chen, X. Xu, J. Cui, M. Wang, S. Powar, U. Bach, Y.B. Cheng, “Remarkable photocurrent of p-type dye-sensitized solar cell achieved by size controlled CuGaO2 nanoplates” J. Mater. Chem. A, vol. 2 pp. 2968-297, 2014. |
[17] | D. Ursu, M. Miclau, R. Banica, N. Vaszilcsin, “Impact of Fe doping on performances of CuGaO2 p-type dye-sensitized solar cells” Materials Letters vol.143 pp. 91–93, 2014. |
[18] | D. H. Ursu, M. Miclău, R. Bănică and I. Grozescu, “Hydrothermal synthesis and optical characterization of Ni-doped CuCrO2 nanocrystals”, Phys. Scr., pp. 014053-014053, 2013. |
[19] | A. Nattestad, X.L. Zhang, U. Bach, Y.B. Cheng, “Dye-sensitized CuAlO2 photocathodes for tandem solar cell applications” J. Photonics Energy vol. 1 011103-011111, 2011. |
[20] | D. Xiong, W. Zhang, X. Zeng, Z. Xu, W. Chen, J. Cui, M. Wang, L. Sun, Y.B. Cheng, “Enhanced Performance of p-Type Dye-Sensitized Solar Cells Based on Ultrasmall Mg-Doped CuCrO2 Nanocrystals” ChemSusChem. Vol.8 pp. 1432 - 1437, 2013. |
[21] | M. Miclau, D. Ursu, S. Kumar, I. Grozescu, “Hexagonal polytype of CuCrO2 nanocrystals obtained by hydrothermal method” Journal of Nanoparticle Research, 14 (2012) 1-8 |
[22] | D. Ursu, M. Miclau, “Thermal stability of nanocrystalline 3R-CuCrO2” Journal of Nanoparticle Research vol. 16, pp. 2160 - 2167, 2013 |
[23] | R. Bywalez, S. Götzendörfer, P. Löbmann. “Structural and physical effects of Mg-doping on p-type CuCrO2 and CuAl0.5Cr0.5O2 thin films” J. Mter. Chem vol. 20, 6562 - 6570, 2010. |
[24] | A. Renaud, L. Cario, P. Deniard, E. Gautron, X. Rocquefelte, Y. Pellegrin, E. Blart, F. Odobel, and S. Jobic,“ Impact of Mg Doping on Performances of CuGaO2 Based p-Type Dye-Sensitized Solar Cells” J. Phys. Chem. Vol. C 118 pp. 54−59, 2014. |
[25] | P. Kubelka, F. Munk, “An article on optics of paint layers” Zh. Tekh. Fiz. Vol.12, pp. 593-620, 1931. |
[26] | P. Kubelka, “New contributions to the optics of intensely light-scattering materials” J. Opt. Soc. Am. Vol. 38 pp. 448-457, 1948. |
[27] | F.A. Benko and F.P. Koffyberg, “Preparation and opto-electronic properties of semiconducting CuCrO2”Mater. Res. Bull., vol.6, pp. 753-757, 1986. |
[28] | A. Nattestad, M. Ferguson, R. Kerr, Y.B. Cheng and U. Bach, “Dye-sensitized nickel(II) oxide photocathodes for tandem solar cell applications.” Nanotechnology vol. 19, pp. 295304 - 295304, 2008. |
[29] | L.C. Wang, M. Tao, “Fabrication and characterization of p–n homojunctions in cuprous oxide by electrochemical deposition,” Electrochem. Solid State Lett., vol. 10 . pp. H248-H250, 2007. |