[1] | M.B. Nair, S. Suresh Babu, H. K. Varma, and A. John, A triphasic ceramic-coated porous hydroxyapatite for tissue engineering application, Acta Biomaterialia, 4, 173, 2008. |
[2] | G. M. Crane, S. L. Ishaug, and A. G. Mikos, Bone tissue engineering, Nature Medicine, 1, 1322, 1995. |
[3] | J. H. Shepherd, S. M. Best, Calcium phosphate scaffolds for bone repair, J of Metals, 63,83–92, 2011. |
[4] | A. Khojasteh, H. Behnia, S. G. Dashti, M. Stevens, Current trends in mesenchymal stem cell application in bone augmentation: A review of the literature. J Oral Maxillofac Surg., 70, 972–982, 2012. |
[5] | F. S. Tabatabaei, S. R. Motamedian, F. Gholipour, K. Khosraviani, A. Khojasteh, Craniomaxillofacial bone engineering by scaffolds loaded with stem cells: A Systematic Review, J Den Sch, 30,113–130, 2012. |
[6] | A. Abarrategi, C. Moreno-Vicente, V. Ramos, I. Aranaz, J. V. Sanz Casado, J. L. López-Lacomba, Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application, Tissue Eng Part A., 14,1305–1319, 2008. |
[7] | C. Xu, Y. Wang, X. Yu, X. Chen, X. Li, X. Yang, S. Li, X. Zhang, A. P. Xiang, Evaluation of human mesenchymal stem cells response to biomimetic bioglass-collagen-hyaluronic acid-phosphatidylserine composite scaffolds for bone tissue engineering, J Biomed Mater Res A, 88, 264–273, 2009. |
[8] | X. B. Zeng, H. Hu, L. Q. Xie, F. Lan, W. Jiang, Y. Wu, Z. W. Gu, Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation, Int J Nanomedicine, 7, 3365–3378, 2012. |
[9] | B. D. Ratner, S. J. Bryant, Biomaterials: Where we have been and where we are going, Annual Rev Biomed Eng, 6, 41–75, 2004. |
[10] | R. Z. Le Geros, J. P. Le Geros, Dense hydroxyapatite. In: Hench LL, Wilson J, editors. Introduction to bioceramics, Singapore: World Scientific, 139, 1993. |
[11] | S. Cazalbou, C. Combes, D. Eichert, C. Rey, Adaptative physicochemistry of bio-related calcium phosphates, J Mater Chem,14, 2148–53, 2004. |
[12] | Thian, E.S., Konishi, T., Kawanobe, Y., Lim, P.N., Choong, C., Ho, B., Aizawa, M., Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties, J Mater Sci Mater. Med,24,437–445, 2013. |
[13] | M. Swetha, K. Sahithi, A. Moorthi, N. Saranya, S. Saravanan, K. Ramasamy, N. Srinivasan, N. Selvamurugan, Synthesis, characterization, and antimicrobial activity of nano-hydroxyapatite-zinc for bone tissue engineering applications. J., NanosciNanotechnol, 12, 167–172, 2012. |
[14] | R. Joseph, K. E. Tanner, Effect of morphological features and surface area of hydroxyapatite on the fatigue behavior of hydroxyapatite-polyethylene composites, Biomacromol, 6,1021–1026, 2005. |
[15] | T. J. Webster, E. A. Massa-Schlueter, J. L. Smith, E. B. Slamovich, Osteoblast response to hydroxyapatite doped with divalent and trivalent cations, Biomaterials, 25, 2111–2121, 2004. |
[16] | T. Kokubo, Formation of bone like apatite on metals and polymers by biomimimetic process, Biomaterials, 12, 155–163, 1996. |
[17] | G. Daculsi, S. Baroth, R. Le Geros, 20 years of biphasic calcium phosphate bioceramics development and applications, Advances in Bioceramics and porous ceramics II, 45–58, 2010. |
[18] | E. Tsuruga, H. Tahita, H. Itoh, Y. Wakisaka, Y. Kuboki, Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis, J Biochem, 121(2),317–24, 1997. |
[19] | W. J. Li, R. Tuli, X. X. Huang, P. Laquerriere, R. S. Tuan, Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold, Biomaterials, 26(35), 5158–5166, 2005. |
[20] | P. X. Ma, R. Zhang, G. Xiao, R. Franceschi, Engineering new bone tissue in vitro onhighly porous poly(a-hydroxyl acids)/hydroxyapatite composite scaffolds, J Biomed Mater Res, 54(2), 284–293, 2001. |
[21] | F. Miyaji, Y. Kono, Y. Suyama, , Formation and structure of zinc–substituted calcium hydroxyapatite, Mater Res Bull, 40, 209–213, 2005. |
[22] | S. Kannan, J. M. Ventura, J. M. F. Ferreira, In situ formation and characterization of fluorine-substituted biphasic calcium phosphate ceramics of varied F-HAP/β-TCP ratios, Chem Mater, 17, 3065–3068, 2005. |