| [1] | S. Lee, U.S. Choi, and S. Li, 1999, Measuring thermal conductivity of fluids containing oxide nanoparticles, Journal of Heat Transfer, 121(2), 280-289. |
| [2] | S.U.S. Choi, 1995, Enhancing thermal conductivity of fluid with nanoparticles. in: D.A. Siginer, H.P. Wang (Eds.), Developments and Applications of Non-Newtonian Flows. ASME FED-231, New York,. 99-105. |
| [3] | S.K. Das, S.U.S. Choi, and H.E. Patel, 2006, Heat transfer in nanofluids: A review, Heat Transfer Engineering, 27, 3-19. |
| [4] | P.K. Namburu, D.P. Kulkarni, D. Misra, and D.K. Das, 2007, Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture, Experimental Thermal and Fluid Science, 32, 397-402. |
| [5] | K.G. Binu, B.S. Shenoy, Rao D.S., and R. Pai, 2014, Static characteristics of a fluid film bearing with TiO2 based nanolubricant using the modified Krieger–Dougherty viscosity model and couple stress model, Tribology International, 75, 69-79. |
| [6] | K. Kwak, and C. Kim, 2005, Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol, Korea-Australia Rheology Journal, 17, 35-40. |
| [7] | Y. Hwang, H.S. Park, J.K. Lee, W.H. Jung, 2006, Thermal conductivity and lubrication characteristics of nanofluids, Current Applied Physics, 6 (S1), 67-71. |
| [8] | Masuda H, Ebata A, Teramae K and Hishinuma N, 1993, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersions of c-Al2O3, SiO2, and TiO2 ultra-fine particles), Netsu Bussei (Japan) 4, 227. |
| [9] | Wang X, Xu X, and Choi S. U. S., 1999, Thermal conductivity of nanoparticle–fluid mixture, Journal of Thermophysics and Heat Transfer, 13(4), 474-481. |
| [10] | Pak B.C. and Cho Y. I., 1998, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer, 11, 151-170. |
| [11] | Putra N., Roetzel W., and Das S.K., 2003, Natural convection of nanofluids, Heat and Mass Transfer, 39(8-9), 775-784. |
| [12] | Prasher R., Song D., Wang J., and Phelan P. E., 2006, Measurements of nanofluid viscosity and its implications for thermal applications, Applied Physics Letters, 89, 133108. |
| [13] | Chen H., Ding Y., He Y., and Tan Ch., 2007, Rheological behavior of ethylene glycol based titania nanofluids Chemical Physics Letters, 444(4-6), 333-337. |
| [14] | M. Kole, and T.K. Dey, 2010, Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant, Journal of Physics D: Applied Physics, 43, 315501-315510. |
| [15] | N. Masoumi, N. Sohrabi, and A Behzadmehr, 2009, A new model for calculating the effective viscosity of nanofluids, Journal of Physics D: Applied Physics, 42, 055501. |
| [16] | S Lee, Choi S U S, Li S, and Eastman J A, 1999, Measuring thermal conductivity of fluids containing oxide nanoparticles Journal of Heat Transfer: ASME DC, 121, 280. |
| [17] | W. Duangthongsuk, S. Wongwises, 2009, Measurement of temperature dependent thermal conductivity and viscosity of TiO2–water nanofluids, Experimental Thermal and Fluid Science, 33, 706–714.. |
| [18] | A. Einstein, 1956, Investigations on the theory of the Brownian movement, Dover Publications Inc., New York. |
| [19] | D.P. Kulkarni, D.K. Das and G.A. Chukwu, 2006, Temperature dependent rheological property of copper oxide nanoparticles suspension, Journal of Nanoscience and Nanotechnology, 6, 1150–1154. |