[1] | R. Sellappan, J. Sun, A. Galeckas, N. Lindvall, A. Yurgens, A. Y. Kuznetsov and D. Chakarov, 2013, Influence of graphene synthesizing techniques on the photocatalytic performance of graphene-TiO2 nanocomposites, Phys. Chem., 15(37), 15528—15537. |
[2] | P. Song, X. Zhang, M. Sun, X. Cui and Y. Lin, 2012, Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties, Nanoscale, 4(5) 1800–1804. |
[3] | S. Takeda, S. Suzuki, H. Odaka and H. Hosono, 2001, Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering, Thin Solid Films, 392, 338-344. |
[4] | Xuesong Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, 2009, Large-area synthesis of high quality and uniform graphene films on copper foils, AAAS Science, 324, 1312-1314. |
[5] | S. W. Fong, M. C. Hersam, J. M. P. Alaboson, J. A. Kellar and Q. H. Wang, 2011, Patterning atomic layer deposition thin films on graphene by atomic force microscope field-induced oxidation, Nanoscape, Appl. Phys. Lett., 8(1), 1-7. |
[6] | S. Park, J. An, I. Jung, R. D. Piner, S. J. An, X. Li, A. Velamakanni, and R. S. Ruoff, 2009, Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents, Nano Lett., 9(4), 1593-1597. |
[7] | K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666-669. |
[8] | L. Tang, Xueming Li, Rongbin Ji, K. S. Teng, G. Tai, Jing Ye, C. Wei and S. P. Lau, 2012, Bottom-up synthesis of large-scale graphene oxide nanosheets, The Royal Society of Chemistry, J. Mater. Chem., 22, 5676–5683. |
[9] | K. Ishibashi, Y. Nosaka, K. Hashimoto and A. Fujishima, 1998, Time-dependent behavior of active oxygen species formed on photo-irradiated TiO2 films in air, J. Phys. Chem., 102, 2117-2120. |
[10] | M. Gartner, R. Scurtu, A. Ghita, M. Zaharescua, M. Modreanub, C. T. rapalisc, M. Kokkoris and G. Kordasc, 2004, Spectro-ellipsometric characterization of sol–gel TiO2–CuO thin coatings, Thin Solid Films, 455 –456, 417-421. |
[11] | Q. N. Zhao, C. L. Li and X. J. Zhao, 2003, The structure and photocatalytic activity of CeO2 doped TiO2 films deposited on glass by magnetron sputtering, Key Engineering Materials, 249, 451-456. |
[12] | M. Gilo and N. Croitoru, 1996, Properties of TiO2 films prepared by ion-assisted deposition using a gridless end-Hall ion source, Thin Solid Films, 283, 84-89. |
[13] | A. Ganguly, S. Sharma, P. Papakonstantinou and J. H. Probing, 2011, The thermal deoxygenation of graphene oxide using high resolution in-situ X-Ray based spectroscopies, J. Phy. Chem. C, 115 (34), 17009-17019. |
[14] | S. Boukrouh, R. Bensaha, S. Bourgeois, E. Finot, and M. C. Marco de Lucas, 2008, Reactive direct current magnetron sputtered TiO2 thin films with amorphous to crystalline structures, Thin Solid Films, 516, 6353–6358. |
[15] | G. Jiang, Z. Lin, C. Chen, L. Zhu, Q. Chang, N. Wang, W. Wei and H. Tang, 2011, TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants, CARBON, 49, 2693–2701. |
[16] | Y. Chen, S. Liu, H. Yu, H. Yin and Q. Li, 2008, Radiation-induced degradation of methyl orange in aqueous solutions, Chemosphere 72(4), 532–536. |
[17] | M. M. Ba-Abbad, A. A. H. Kadhum, A. B. Mohamad, M. S. Takriff and K. Sopian, 2012, Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chloro-phenols under direct solar radiation, Int. J. Electrochem. Sci., 7, 4871-4888. |
[18] | S. Ghasemia, A. Esfandiarb, S. Rahman Setayesha, A. H Yangjehc, A. I. Zadb and M.R. Gholamia, 2013, Synthesis and characterization of TiO2–graphene nanocomposites modified with noble metals as a photocatalyst for degradation of pollutants, Applied catalysis A: General, 462-463, 82-90. |
[19] | L. Martinez, S. Torres, V. Likodimos, J. Figueiredo, J. Faria, P. Falaras and A. Silva, 2012, Advanced nanostructured photocatalysts based on reduced graphene oxide-TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye, Applied Catalysis B: Environmental, 123-124, 241-256. |
[20] | V. Steng, S. Bakardjieva, T. M. Grygar, J. Bludska and M. Kormunda, 2013, TiO2-graphene oxide nanocomposite as advanced photocatalytic materials, Chemistry Central Journal, 7(1):41. |
[21] | Changjing Fu, G. Zhao and S. Li, 2013, Evaluation and Characterization of Reduced Graphene Oxide Nanosheets as Anode Materials for Lithium-Ion Batteries, Int. J. Electrochem. Sci., 8, 6269-6280. |
[22] | L. Shahriary and A. A. Athawale, 2014, Graphene Oxide Synthesized by using Modified Hummers Approach, IJREEE, 2(1), 58-63. |
[23] | R. Mohan, K. Karthikeyan and S.J. Kim, 2012, Enhanced photocatalytic activity of Cu-doped ZnO nanorods, Solid State Commun., 152, 375-380. |