[1] | Argun H., Kargi F., Kapdan I. K., Oztekin R., "Biohydrogen Production by Dark Fermentation of Wheat Powder Solution: Effects of C/N And C/P Ratio on Hydrogen Yield and Formation Rate", International Journal of Hydrogen Energy, vol. 33, pp. 1813-1819, 2008. |
[2] | Manish S., Banerjee R., "Comparison of Biohydrogen Production Processes", International Journal of Hydrogen Energy, vol. 33, pp. 6046–6057, 2008. |
[3] | Das D., Veziroglu T. N., "Advances in Biological Hydrogen Production Processes", International Journal of Hydrogen, vol. 33, pp. 6046–6057, 2008. |
[4] | Levin D. B., Islam R., Cicek N., Sparling R, "Hydrogen Production by Clostridium Thermocellum 27405 from Cellulosic Biomass Substrates", International Journal of Hydrogen Energy, vol. 31, pp. 1496-1503, 2006. |
[5] | Larminie J., Dicks A., Fuel Cell Systems Explained. Volume 2: John Wiley & Sons Ltd, England, 2003. |
[6] | Ghirardi M. L., Zhang L., Lee J.W., Flynn T., Seibert M., Greenbaum E., " Microalgae: A Green Source of Renewable Hydrogen.", Trends in Biotechnology, vol. 18, pp. 506–511, 2000. |
[7] | Debabrata Das, Namita Khanna, Chitralekha Nag Dasgupta., Biohydrogen Production, Fundamentals and Technology Advances, Taylor & Francis Group, London, New York, 2014 |
[8] | Harwood C. S., Bioenergy, ASM Press, Washington. 2008. |
[9] | Yetis M., Gunduz U., Eroglu I., Yucel M., Turker L., "Photoproduction of Hydrogen from Sugar Refinery Wastewater by Rhodobacter Sphaeroides O.U.001", International Journal of Hydrogen Production, vol. 25, pp. 1035-1041, 2000. |
[10] | Seifert K., Waligorska M., Laniecki M., "Brewery Wastewaters in Photobiological Hydrogen Generation in Presence Of Rhodobacter Sphaeroides O.U. 001", International Journal of Hydrogen Energy, vol. 35, pp. 4085-4091, 2010. |
[11] | Hallenbeck P. C., Ghosh D., "Advances in Fermentative Biohydrogen: The Way Forward?", Trends in Biotechnology, vol. 27, pp. 287-297, 2009. |
[12] | Das D., Veziroglu T. N., "Hydrogen Production by Biological Processes: A Survey of Literature", International Journal of Hydrogen Energy, vol. 26, pp. 13-28, 2001. |
[13] | Hallenbeck P. C., Benemann J. R., "Biological Hydrogen Production: Fundamentals and Limiting Processes", International Journal of Hydrogen Energy, vol. 27, pp. 1185-1193, 2002. |
[14] | Benemann J., "Hydrogen Biotechnology: Progress And Prospects", Nature Biotechnology, vol. 14, pp. 1101-1103, 1996. |
[15] | Levin D. B., Pitt L., Love M., "Biohydrogen Production: Prospects and Limitations to Practical Application", international Journal of Hydrogen Energy, vol. 29, pp. 173-185, 2004. |
[16] | Hallenbeck P. C., Abo-Hashesh M., Ghosh D., "Strategies for Improving Biological Hydrogen Production", Bioresource Technology, vol. 110, pp. 1-9, 2012. |
[17] | Chader S., Haceneb H., Agathos S. N., "Study of Hydrogen Production by Three Strains of Chlorella Isolated from the Soil in The Algerian Sahara", International Journal of Hydrogen Energy, vol. 34, pp. 4941-4946, 2009. |
[18] | Tamburic B., Zemichael F.W., Maitland G. C., Hellgardt K., "Parameters Affecting the Growth and Hydrogen Production of the Greenalage Chlamydomonas Reinhardtii", International Journal of Hydrogen Energy, vol. 35, pp. 1-5, 2010. |
[19] | Ohta S., Miyamoto K., Miura Y., "Hydrogen Evolution as a Consumption Mode of Reducing Equivalents in Green Algal Fermentation", Plant Physiology, vol. 83, pp. 1022-1026, 1987. |
[20] | Raksajit W., Satchasataporn K., Lehto K., Maenpaa P., Incharoensakdi A., "Enhancement of Hydrogen Production by the filamentous Non-Heterocystous Cyanobacterium Arthrospira Sp. PCC 8005", International Journal of Hydrogen Energy, vol. 37, pp. 18791-18797, 2012. |
[21] | Tian X., Liao Q., Zhu X., Wang Y., Zhang P., Li J., "Characteristics of a Biofilm Photobioreactor as Applied to Photo-Hydrogen Production", Bioresource Technology, vol. 101, pp. 977-983, 2010. |
[22] | Seifert K., Waligorska M., Wojtowski M., Laniecki M., "Hydrogen Generation from Glycerol in Batch Fermentation Process", International Journal of Hydrogen Energy, vol. 34, pp. 3671-3678, 2009. |
[23] | Kim M. S., Lee D. Y., "Fermentative Hydrogen Production from Tofu-Processing Waste and Anaerobic Digester Sludge Using Microbial Consortium", Bioresource Technology, vol. 101, pp. S48-S52, 2010. |
[24] | Lin C. N., Wu S. Y., Chang J. S., Chang J. S., "Biohydrogen Production in a Three-Phase Fluidized Bed Bioreactor using Sewage Sludge Immobilized by Ethylene–Vinyl Acetate Copolymer", Bioresource Technology, vol. 100, pp. 3298-3301, 2009. |
[25] | Morreale B. D., Ciocco M. V., Enick R. M., Morsi B. I., Howard B. H., Cugini A. V., Rothenberger K. S., "The Permeability of Hydrogen in Bulk Palladium at Elevated Temperatures and Pressures", Journal of Membrane Science, vol. 212, pp. 87-97, 2003. |
[26] | Barillas M. K., Enick R. M., O’Brien M., Perry R., Luebke D. R., Morreale B. D., "The CO2 Permeability and Mixed Gas CO2/H2 Selectivity of Membranes Composed", Journal of Membrane Science, vol. 372, pp. 29-39, 2011. |
[27] | David O. C., Gorri D., Urtiaga A., Ortiz I., "Mixed Gas Separation Study for the Hydrogen Recovery from H2/CO/N2/CO2 Post Combustion Mixtures using a Matrimid Membrane", Journal of Membrane Science, vol. 378, pp. 359-368, 2011. |
[28] | Shao L., Low B. T., Chung T. S., Greenberg A. R., "Polymeric Membranes for the Hydrogen Economy: Contemporary Approaches and Prospects for the Future ", Journal of Membrane Science, vol. 327, pp. 18-31, 2009. |
[29] | Car A., Stropnik C., Yave W., Peinemass K. V., "PEG Modified Poly(Amide-B-Ethylene Oxide) Membranes for CO2 Separation", Journal of Membrane Science, vol. 307, pp. 85-95, 2008. |
[30] | Lopes T., Paganin V. A., Gonzalez E. R., "The Effects of Hydrogen Sulfide on the Polymer Electrolyte Membrane Fuel Cell Anode Catalyst: H2S–Pt/C Interaction Products", Journal of Power Source, vol. 196, pp. 6256-6263, 2011. |
[31] | Harasimowicz M., Orluk P., Zakrzewska-Trznade G., Chmielewski A.G., "Application of Polyimide Membranes for Biogas Purification and Enrichment", Journal of Hazardous Materials, vol. 144, pp. 698-702, 2007. |
[32] | David O. C., Gorri D., Nijmeijer k., Ortiz I., Urtiaga A., "Hydrogen Separation from Multicomponent Gas Mixtures Containing CO, N2 and CO2 using Matrimids Asymmetric Hollow Fiber Membranes", Journal of Membrane Science, vols. 419-420, pp. 49-56, 2012. |
[33] | Bakonyi P., Nemestothy N., Ramirez J., Ruiz-Filippi R., Belafi-Bako K., "Escherichia Coli (XL1-BLUE) for Continuous Fermentation of Biohydrogen and Its Separation by Polyimide Membrane", International Journal of Hydrogen Energy, vol. 37, pp. 5623-5630, 2012. |
[34] | Shalygin M. G., Abramov S. M., Netrusov A. I., Teplyakov V. V., "Membrane Recovery of Hydrogen from Gaseous Mixtures of Biogenic and Technogenic Origin", International Journal of Hydrogen Energy, vol. 40, pp. 3438-3451, 2015. |
[35] | Modigell M., Schumacher M., Teplyakov V. V., Zenkevich V. B., "A Membrane Contactor for Efficient CO2 Removal on Biohydrogen Production", Desalination, vol. 224, pp. 186-190, 2008. |
[36] | Beggel F., Modigell M., Shalygin M., Teplyakov V., Zenkevitch V., "Novel Membrane Contactor for Gas Upgrading in Biohydrogen Production", Chemical Engineering Transactions, vol. 18, pp. 397-402, 2009. |
[37] | Beggel F., Novik I. J., Modigell M., Shalygin M. G., Teplyakov V.V., Zenkevitch V. B., "A Novel Gas Purification System for Biologically Produced Gases", Journal of Cleaner Production, vol. 18, pp. S43-S50, 2010. |
[38] | Malik M. A., Hashim M. A., Nabi F., "Ionic Liquids in Supported Liquid Membrane Technology", Chemical Engineering Journal, vol. 171, pp. 242-254, 2011. |
[39] | Cserjési P., Nemestóthy N., Vass A., Csanádi Z., Bélafi-Bakó K., "Study on Gas Separation by Supported Liquid Membranes Applying Novel Ionic Liquids", Desalination, vol. 245, pp. 743-747, 2009. |
[40] | Cserjési P., Nemestóthy N., Bélafi-Bakó K., "Gas Separation Properties of Supported Liquid Membranes Prepared with Unconventional Ionic Liquids", Journal of Membrane Science, vol. 349, pp. 6-11, pp.1-8, 2010. |
[41] | Neves L.A., Nemestothy N., Alves V.D., Cserjesi P., Belafi-Bako K., Coelhoso I. M., "Separation of Biohydrogen by Supported Ionic Liquid Membranes", Desalination, vol. 240, pp. 311-315, 2009. |
[42] | Kanehashi S., Kishida M., Kidesaki T., Shindo R., Sato S., Miyakoshi T., Nagai K., " CO2 Separation Properties of a Glassy Aromatic Polyimide Composite Membranes Containing High-Content 1-Butyl-3-Methylimidazolium Bis (Trifluoromethylsulfonyl)Imide Ionic Liquid", Journal of Membrane Science, vol. 430, pp. 211-222, 2013. |
[43] | Gu Y., Cussler E. L., Lodge T. P., "ABA-Triblock Copolymer Ion Gels for CO2 Separation Applications", Journal of Membrane Science, Vols. 423-424, pp. 20-26, 2012. |
[44] | Zha F.F., Fane A.G., Fell C.J.D., Schofield R.W., "Critical Displacement Pressure of a Supported Liquid Membrane", Journal of Science, vol. 75, pp. 69-80, 1992. |
[45] | Gan Q., Rooney D., Xue M., Thompson G., Zou Y., "An Experimental Study of Gas Transport and Separation Properties of Ionic Liquids Supported on Nanofiltration Membranes", Journal of Memmbrane Science, vol. 280, pp. 948-956, 2006. |
[46] | Xie G. J., Liu B. F., Wen H. Q., Li Q., Yang C. Y., Han W. L., "Bioflocculation of Photo-Fermentative Bacteria induced by Calcium Ion for Enhancing Hydrogen Production", International Journal of Hydrogen Energy, vol. 38, pp. 7780-7788, 2013. |
[47] | Finotella A., Bara J. E., Camper D., Noble R. D., "Room Temperature Ionic Liquid: Temperature Dependence of Gas Solubility Selectivity", Industry & Engineering Chemistry Research, Vol. 47, pp. 3453-3459, 2008. |
[48] | Izak P., Ruth W., Fei Z., Dyson P. J., Kragl U., "Selective Removal of Acetone and Butan-1-Ol From Water with Supported Ionic Liquid–Polydimethylsiloxane Membrane by Pervaporation", Chemical Engineering Journal, vol. 139, pp. 318-321, 2008. |
[49] | Ozmihci S., Kargi F., "Dark Fermentative Bio-Hydrogen Production from Waste Wheat Starch using Co-Culture with Periodic Feeding: Effects of Substrate Loading Rate", International Journal of Hydrogen Energy, vol. 36, pp. 7089-7093, 2011. |
[50] | Chen S. D., Lo Y.C., Lee K. S., Huang T. I., Chang J. S., "Sequencing Batch Reactor Enhances Bacterial Hydrolysis of Starch Promoting Continuous Bio-Hydrogen Production from Starch Feedstock", International Journal of Hydrogen Energy, vol. 34, pp. 8549-8557, 2009. |